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Abstract In this work, we propose
a general method for computing
distance between video frames or
sequences. Unlike conventional
appearance-based methods, we
first extract motion fields from
original videos. To avoid the huge
memory requirement demanded by
the previous approaches, we utilize
the “bag of motion vectors” model,
and select Gaussian mixture model
as compact representation. Thus,
estimating distance between two
frames is equivalent to calculating the
distance between their corresponding
Gaussian mixture models, which
is solved via earth mover distance
(EMD) in this paper. On the basis of
the inter-frame distance, we further
develop the distance measures for
both full video sequences.
Our main contribution is four-fold.
Firstly, we operate on a tangent
vector field of spatio-temporal 2D
surface manifold generated by video
motions, rather than the intensity

gradient space. Here we argue that the
former space is more fundamental.
Secondly, the correlations between
frames are explicitly exploited using
a generative model named dynamic
conditional random fields (DCRF).
Under this framework, motion fields
are estimated by Markov volumetric
regression, which is more robust
and may avoid the rank deficiency
problem. Thirdly, our definition for
video distance is in accord with
human intuition and makes a better
tradeoff between frame dissimilarity
and chronological ordering. Lastly,
our definition for frame distance
allows for partial distance.

Keywords Video analysis · Motion
field · Activity classification

1 Introduction

In recent years, analysis of video information has attracted
growing attention from the computer vision community.
This is mainly because videos provide much more infor-
mation than separate images and therefore we have the
possibility to make many vision tasks practical. Related

∗This work was supported by China NSF Grant No. 60573149, Beijing
NSF Grant No. 4072013.

applications include event detection [1, 9, 14], event clus-
tering [22], action classification [1], and others [10].

One of the crucial issues in the above topics is how
to estimate the distance or similarity between two frames
or videos, which should reflect similitude of video con-
tents, especially regarding motions or behaviors. The
video appearance provides few cues due to the fact that
the same behavior could have different spatial proper-
ties in videos (for example, two people wearing different
clothes perform the same action). On the contrary, in-
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tensity gradients and optical flow are more robust and
reasonable. Many motion-based similarity measures have
been proposed in the recent literature. While in some ap-
proaches parametric models and specific types of events
are needed [4], there are others designed for general pur-
pose [9, 22].

In this paper, we aim at providing a general approach
to the above problem based on video motion patterns.
The works most related to ours are found in [4, 14, 22].
According to our observation, there are two distinct
ways to utilize video motions: space-time gradient-based
methods [22] and optical-flow-based methods [4, 9]. Al-
though the former proved effective in event-based analysis
of video in Zelnik and Irani’s work [22], we argue that
optical flow is more essential. Note that optical flow
roughly indicates an object’s motion direction. It could
form a tangent vector field of the 2D spatio-temporal sur-
face manifold generated by the motion event contained in
video. It is known that in the ideal case optical flow should
be normal to possible intensity gradients. For a space-
time point there could be multiple feasible gradients even
its optical flow is uniquely decided. Thus, optical flow is
more fundamental to describe video motions.

There are many ways to estimate the similarity be-
tween two objects (signal, images, shapes, etc.), among
which Boiman and Irani’s criterion [2] is one of the most
interesting. The idea behind this work is reasonable: if an
object S1 could be relatively easily composed by different
parts of another object S2, then there is a high possibility
that they share a large similarity score, which is called sim-
ilarity by composition [2] and several examples for illus-
tration are found in the work. In this paper we extend this
idea to the field of video analysis. Our main contribution
lies in introducing the transportation distance [12] to pro-
vide reasonable solutions to the similarity by composition
idea. Specifically speaking, information in a single video
frame is explicitly clustered into several distinct parts, and
the distance measure between two frames is proportional
to labors spent on transforming one into the other, which
could be seen as an equivalent expression of the above-
mentioned composition operation.

2 Overview

It is the common case to model video as separate images
and process videos in a frame-by-frame manner, which
has been proven effective in many applications as shown
in [19]. However, taking into account the inter-frame cor-
relations would go one step further towards fully exploit-
ing the information contained in videos. In this paper, we
model video sequences using dynamic conditional ran-
dom field (DCRF, see [18] for formal definition), which
is a graphical model (see Fig. 1) satisfying the Markov
property typically with a one-dimensional chain topology.
Each node in it is conditioned on the whole data and also

Fig. 1. Graphical model for DCRF

a Markov random field. The DCRF formulation relaxes
our burden to model the complicated dependencies in
source data, and seriously regards influence between adja-
cent graph nodes along all dimensions. Under the DCRF
formulation, the motion vector for each frame pixel only
depends on its small local neighbor patch (both in the spa-
tial and temporal sense).

It is another crucial issue to decide how to model mo-
tion information in a single frame. For simplicity and ef-
ficiency, we ignore the spatial configuration information
within one frame and model it by “bag of motion vec-
tors”. We represent motion fields with the Gaussian mix-
ture model (GMM), which is proved to be a fairly efficient
and compact representing form to approximate the real
probability distribution. The initial parameters for GMM
are computed through k-means, and are subsequently re-
fined by iterative expectation-maximization (EM) [3].

Estimating the dissimilarity between two frames is rea-
sonable and straightforward by comparing their corres-
ponding GMMs. As argued in [7], the distance for GMMs
could be expressed in the Kullback–Leibler (KL) diver-
gence form. However, as KL-divergence between two
GMMs could not be analytically computed, in implemen-
tation we approximate it by the earthmover distance simi-
lar to [6]. Keep in mind that this is only the distance be-
tween frame pairs. For two integrated video clips, we have
to calculate their similarity basing on the frame-to-frame
distances. From our observations, it could be considered
to be a many-to-one frame matching problem. A good
matching between two input video sequences should re-
spect both the dissimilarity between matching frame pairs
and inner chronological orders. Efros’s patch correlation-
based method [4] results in a rigid temporal consistency. A
similar issue arises in [22], where a sliding window shifts
across the entire sequence. As an alternative, we define
an energy function that could tolerate more temporal in-
consistency, and search for its global optimal using belief
propagation (BP) [5, 15].
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3 Motion field

3.1 Probabilistic modeling for optical flow fields

It is non-trivial to model motion fields using a probabilis-
tic language, since more advanced statistical methods could
be potentially introduced for refinement. We treat a video
sequence as a space-time volume following chronological
order. For each image pixel, a 3-dimensional motion vector
(u, v, w) is associated to it. If videos are captured at a con-
stant time interval, the velocity components projected on
the time coordinate are always equal to 1. Hence our aim
is reduced to estimate the 2-tuple (u, v), which could be
roughly understood as an object’s respective offset on the x
and y coordinates relative to the previous frame.

With the assumption that a pixel is only correlated with
its space-time neighbors, we model the video sequences
by dynamic conditional random fields (DCRF) [18],
whose graphical model is illustrated in Fig. 1. Let M
and Z denote the motion fields and space-time volume
with RGB channels, respectively. mp is the motion vec-
tor for pixel p. According to the Hammersley–Clifford
theorem [11], the negative log form of posterior could be
represented as below:

E = − log P(M|Z)

= −
∑

p

log φ1(mp|Z)−
∑

y∈Np

log φ2(mp, my|Z)

−
∑

qi∈N ′
p

log φ3(mp, mq1, . . . , mqk |Z)+ const., (1)

where N ′
p and Np both are neighborhood systems, yet

differ in that the former is a multi-variable function which
describes the relation to neighbors in previous or subse-
quent frames, while the latter is binary and located in the
current frame. Note that motion vectors here all have con-
tinuous real values, which complicates the computation.
Current estimating methods for optical flow are mostly de-
veloped based on the first two terms in Eq. 1. However,
to utilize contextual information is beneficial and brings
about more accurate and consistent estimation in many
cases. In the following subsection, we developed Markov
volumetric regression to explicitly exploit this kind of in-
formation.

3.2 Markov volumetric regression

For videos captured with a high noise level, the esti-
mated motion field is corrupted by small perturbations and
noises. Previous optical flow algorithms, such as classic-
al Lucas–Kanade (LK) [16], operate in a frame-by-frame
style and usually adopt a special denoising strategy for
noisy image sequences. However, contextual information
contained in chronologically adjacent frames could pro-
vide other valuable clues to correct erroneous estimation.

To reduce the noise level in low-speed motions, more
consistency within a temporal neighborhood is favorable.
However, it is difficult to describe a well-defined criterion
for the consistency. We adopt an idea similar to that of [17]
and [20], where the authors argue that a good estimation
for a current pixel should be approximately inferred from
its neighbors. This idea is called local consistency in some
literature. For clarity, first we will briefly review the op-
tical flow equation, and then illuminate how the idea of
local consistency benefits.

For each space-time point q positioned at (x, y, t) and
inside the 3D patch around pixel p, the partial derivative of
video intensity I on time t satisfies the optical flow equa-
tion [16]:

d Iq

dt
= ∂Iq

∂x
u + ∂Iq

∂y
v+ ∂Iq

∂t
w = ∇ Iq ·mq = 0, (2)

where · denotes the inner product between intensity gradi-
ent and motion vector. The inner product equal to 0 re-
flects the orthogonality of two vectors.

Now we can begin to detail the proposed Markov vol-
umetric regression procedure. Our method operates on
3-D space-time patches around current position. In im-
plementation we typically select a 5×5×3 patch, which
amounts to the fact that current estimation is affected by
both frames before and after it, rather than either of the
two alone. This brings a stronger smoothing effect. The
spatial and temporal extents of the small patch could be
adjusted according to video resolution and motion vel-
ocity. If we pile all the constraints derived from Eq. 2 in
a matrix form, we can obtain the following representation:

A

(
u
v

)
= −b, (3)

where

A =

⎛
⎜⎜⎝

∂Iq1
∂x

∂Iq1
∂y

...
...

∂Iqk
∂x

∂Iqk
∂y

⎞
⎟⎟⎠ b =

⎛
⎜⎜⎝

∂Iq1
∂t
...

∂Iqk
∂t

⎞
⎟⎟⎠.

Following the intuition that pixels in the previous
frame with a similar color might have a big chance to share
the same motion patterns, we can put extra local consis-
tency constraints into Eq. 3, which implies the Markov
property of the motion fields. That is:

A∗ =
⎛

⎝
A

λ 0
0 λ

⎞

⎠ b∗ =
⎛

⎝
b

λ
∑

q wquq

λ
∑

q wquq

⎞

⎠,

where wq ∝ exp(−‖zp − zq‖2/σ2
c ), and z denotes the

color vector of a pixel. The sum of all wq should be
normalized to be equal to one. The motivation for in-
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Fig. 2a–f. Comparison of Markov volumetric regression (right col-
umn) and Lucas–Kanade algorithm (middle column). Brightness is
proportional to motion velocity. Note that the proposed regression
method suppresses background noises and tends to smoother mo-
tion estimations compared to LK

troducing extra terms in Eq. 3 could be summarized as:
adjust its own estimation according to the received contex-
tual information and propagate labels or values across its
neighborhood. λ reflect our belief for the consistency with
the previous estimation, which could be user-specified or
automatically adjusted. Also note that in the new equation,
the two columns of matrix A∗ are always linear indepen-
dent, thus avoiding rank deficiency [8]. A comparison with
the LK algorithm could be found in Fig. 2. Note that both
noises are suppressed and motion boundaries are thick-
ened due to smoothing.

4 Distance measure for frames

4.1 Motion representation for a single frame

Directly storing motion fields obtained in previous steps
needs huge memory, thus a compact and effective repre-
sentation should be seriously chosen. The Gaussian mix-
ture model (GMM) is one of the most popular models
suitable for such a task. We firstly cluster the input data
according to motion similarity and spatial adjacency (in
current context, they form a 4-tuple vector, two for mo-
tion and two for position), and then represent only using
the motion components of its cluster center, since pos-
ition and size of an object are typically correlated with
spatial resolution and usually most effective only when
their parametric models are known and well-defined as
guidance.

The clustering process starts with k-means to get
initial segments. Then iterative EM [3] is taken to opti-
mize Gaussian parameters. Finally, we get several clus-
ters, with their priors, means, and variances known, i.e.
{wi, (ui, vi), σi, i = 1 . . . K}, where K is the predefined
cluster numbers. Two illustrative examples are found
in Fig. 3.

Fig. 3a–d. GMM representation for motion fields. Motion vectors
are clustered according to motion similarity and spatial adjacency.
Pixels that belong to the same cluster are in one color

4.2 Earthmover-based frame distance

There are some existing approaches proposed to meas-
ure distance between two GMMs [6, 7], among which an
interesting one is defined in a KL-divergence sense [7].
However, KL-divergence is not appropriate for our case
for its computation complexity. Instead we adopt the
earthmover distance (EMD) [12, 13] as the distance meas-
ure. The choice of EMD is not only for its efficiency, but
also for other attractive characteristics. In the following,
first we will briefly introduce EMD’s principles, and then
list its intuitive meanings for our application and advan-
tages over other alternatives.

Earthmover distance could be best understood via
the following analogy: for two sets of weighted fea-
tures, one could be viewed as “earth”, while the other
as “holes” in a corresponding place. Formally speaking,
let S = {(s1, ws1), . . . , (sm, wsm )} and T = {(t1, wt1), . . . ,
(tn, wtn)} denote two distributions consisting of distinct
features and corresponding weights or priors. A ground
distance needs to be defined to evaluate a unit of work for
transporting a unit of earth to the holes. Let dist(s, t) de-
note the ground distance between two features s and t. The
EMD between S and T is then given as below:

EMD(S, T ) =
∑m

i=1
∑n

j=1 fijdist(si, tj)∑m
i=1

∑n
j=1 fij

, (4)

where fij ≥ 0, represents the optimal admissible flow
from si and tj . The calculation of EMD in Eq. 4 is equiva-
lent to seeking an optimal fij subject to the following
constraints:

n∑

j=1

fij ≤ wsi,

m∑

i=1

fij ≤ wt j

m∑

i=1

n∑

j=1

fij = min
( m∑

i=1

wsi,

n∑

j=1

wt j

)
. (5)

For the current task, we ignore the variances in GMM,
and treat each mean as a feature, prior as its weight. The



Contextual motion field-based distance for video analysis 599

ground distance in Eq. 4 could have various forms. The
most frequently used distances are Euclidean and cosine.
While the former depends on the magnitude of difference
between two vectors, the cosine distance is determined by
motion direction only and the effect of motion magnitude
is removed carefully. This treatment is based on the fol-
lowing observation: the same “walking” action taken by
an old man or a teenager may be classified to different cat-
egories since they move fast or slow, which is certainly
against the true situation. In the following we will use dif-
ferent distances according to the requirements of different
applications. Given two means m̄1 and m̄2, their cosine
distance could be calculated as:

dist(m̄1, m̄2) = 1− m̄1 · m̄2

‖m̄1‖‖m̄1‖ . (6)

The most attractive feature of EMD is its accordance
with human intuition. For example, in Fig. 4 we segment
three video frames into small parts, each of which under-
takes a uniform motion. It is obvious to find out that the
first two have similar motion patterns compared to each
other, while this is not true for the third frame. In fact, it
is effortless for a human to search for matching pairs be-
tween the two sets of moving parts. Intuitively, a distance
definition basing on the extent of how they match each

Fig. 4. Intuitive explanation for EMD. The left column shows
frames selected from three videos, and the right column shows the
segmentations according to motion similarity and spatial adjacency

other seems fairly reasonable. Fortunately, EMD is qual-
ified for this task. EMD distance is a relatively accurate
description of the effort required to compose one object
from distinct parts of another, thus is superior to many
other distance definitions in this aspect.

Our earthmover-based definition has other merits. Here
we describe its usefulness for the computation of partial
distance. In the case of multiple motions, blindly comput-
ing between the entire images sometimes fails to disclose
the truth. For example, the “waving” and “rotating” videos
in Fig. 5 could be seen as parts of the “waving and rotat-
ing” video (the leftmost video), thus are supposed to have
large similarity. However, directly applying Eq. 4 does not
reflect their true similar extents. Substituting pixel counts
for the Gaussian weights in GMMs could utilize the power
of EMD to calculate partial distance, namely skipping the
normalization step in the EM algorithm. Consequently,
certain components and their counterparts share similar
weights, thus lower distances are obtained. A simple illus-
tration of the above idea is presented in Fig. 6. For the pur-
pose of evaluation, given two video sequences V1 = {Si},

Fig. 5a–c. Videos for partial distance illustration. a Video 1 – “wav-
ing and rotating”. b Video 2 – “waving”. c Video 3 – “rotating”

Fig. 6. Experimental results for partial distance. We calculate both
the distances of Video 2 and Video 3 to Video 1 in Fig. 5 with or
with out partial consideration. The left column is for the “waving”
video, and the right column for the “rotating” video. The three bins
in the horizonal coordinate denote the statistics S1, S2 and S3 (see
Eqs. 7–9), respectively. Note that S2 for Video 2 is drastically re-
duced due to partial distance, which could be intuitively understood
via the idea of similarity by composition
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Fig. 7. Example for frame matching with belief propagation. Frame neighbors are connected with a solid line, whose width is proportional
to the dissimilarity extent. The vertical dashed line between frame 3 and 4 in the source video (the lower one) shows the fact that they
are very dissimilar from each other thus could automatically break the chronological constraints here

i = 1, . . . , L and V2 = {Tj}, j = 1, . . . , K , we define three
statistics for comparing the partial distance with the ori-
ginal one:

S1 = 1

L

L∑

i=1

min
j

EMD(Si, Tj) (7)

S2 = 1

K

K∑

j=1

min
i

EMD(Si, Tj) (8)

S3 = 1

LK

L∑

i=1

K∑

j=1

EMD(Si, Tj). (9)

5 Distance measure for videos

After defining distance between two frames, it is now pos-
sible to estimate how similar two video sequences are. As
argued before, a good distance definition should make a
tradeoff between dissimilarities for matching frame pairs
and consistency with the chronological orders. Here we
define an energy function satisfying the above require-
ments:

E = λv

∑

p,q

wpq exp
(−‖( fp − fq)− (p−q)‖2/σ2

v

)

+
L∑

i=1

EMD(Si, Tfi ), (10)

where p and q are indices for adjacent frames, fi de-
notes the matching frame’s index in target video T for
frame i in source video S. U is the upper bound for EMD.
wpq ∝ (U −EMD(Sp, Sq)) and should be normalized and
scaled. The first term reflects the temporal-consistency
constraints, while the second term is the sum of all match-
ing frame pairs in source and target videos. λv is a positive
constant introduced to balance two energy terms in Eq. 10.

Finding the optimal matching on the whole video se-
quences has high complexity both in computing time and
memory. Typically we firstly divide the source video into
several segments with similar motions and a relatively
shorter length than the target video (possible segmenting
strategies include greedy algorithm, clustering techniques
discussed in Sect. 6, orotheradvanced schemes), andsearch
for optimals using belief propagation (BP) [5, 15].

Conventional methods such as dynamic time warping
(DTW) and sliding window (see [4]) have their limitations
for the optimization of Eq. 10, since they handle chrono-
logical ordering in a too rigid way. On the contrary, BP
could handle situations like in Fig. 7 more flexibly, where
the matching frames of the last three frames lie before the
first three, while within each group chronological orders
are kept. Moreover, it could be proved that sliding window
is a special form of BP. Namely, when λv in Eq. 10 tends to
infinity, BP is equivalent to sliding window.

Fig. 8. Weizmann video database for action classification experi-
ment
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Fig. 9. a Confusion matrix for Weizmann video database (Performance average is 89.25%). b Curve for the misclassified videos

6 Experiments

Potential applications of our proposed distance measure
include human activity classification, unsupervised and
semi-supervised video clustering, event detection etc.

1. Activity classification. Given a database of example
human activities, we can judge the category for a new
frame or video, basing on the distance previously defined.
Examples are shown in Figs. 8 and 9. There are in total
ten kinds of distinct human motions and the whole Weiz-
mann database1 consists of 93 video clips. For each video
we perform a leave-one-out procedure, i.e. we treat the
other 92 videos as the training set. A confusion matrix is
given in the left of Fig. 9 and the relations between error
classification and sliding window size (for convenience of
comparison we set λ in Eq. 10 to infinity) is curved in the
right. The algorithm misclassified 10 of 93 videos, which
is relatively higher than the original results in [1]. This is
mainly because we dropped spatial configurations for ef-
ficiency and no preprocessing steps such as background
subtraction in [1], also there are no user interactions. How-
ever, this makes our algorithm more general, not limited
to static camera and low-level noises as in [1]. Informa-
tion like spatial moments is supposed to be beneficial for
higher accuracy.

2. Unsupervised video clustering. We can also perform
clustering tasks basing on the distance matrix D = {dij},
where dij is the EMD distance between frame i and j .
Examples are shown in Figs. 10 and 11. For periodical
behaviors, we finally get chessboard-like distance matri-

1 http://www.wisdom.weizmann.ac.il/∼vision

Fig. 10a–d. Unsupervised clustering analysis for “waving” and
“jumping”. c, d are distance matrices for the source videos re-
spectively, and matrix element’s brightness is proportional to its
distance value. Both of the two videos contain periodical actions.
We calibrate one cycle (emphasized in green and red boxes, re-
spectively). Further analysis for the “jumping” video in b could be
found in Fig. 12

ces and it is convenient to locate one cycle for specific
motion patterns (see Fig. 10). For videos with isolated ac-
tions, the distance matrices are much more complicated.
In Fig. 11, we calculate the distance matrix of the “Ste-
fan” video with itself, and with “walking” and “jumping”
videos. We select four representative frames from “Ste-
fan” for a better understanding of the distance matrix. As
seen in Fig. 11, the motion-based clustering results for
“Stefan” are obvious. Current clustering methods, such as
normalized cuts [21], or even simple k-means, are quali-
fied for the segmenting task.

Moreover, note that “Stefan” is captured with a fast-
moving camera. Although in its phase 1 and 3 the tennis
player moves to the right, the dominant motions for cur-
rent frames are inversely left-moving, which seems a bit
strange at first glance. In fact, the camera’s movement
could account for this. To keep the player in the center of
frames, the camera keeps up with the player, thus the au-
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Fig. 11. Distance matrices for “Stefan” standard testing video sequence (left). M1: distance matrix for “Stefan” itself. M2: distance matrix
for a “walking” video. M3: distance matrix for a “jumping” video

Fig. 12. Motion phase analysis for the “jumping” video. See text for explanation

dience and tennis court seem to undertake a left-moving
motion. Thus, phase 1 and 3, rather than the other two
phases, are more similar to the “walking” video, which
contains a walking action from right to left. The distance
matrix for the “jumping” sequence is dominated by bright
intensity, which is in accord with the absence of up-down
movement in the “Stefan” video.

3. Motion phase analysis. Another interesting application
of our method is analyzing motion phases in a video. We
take the “jumping” video in Fig. 10 for illustration. The
jumping action could be seen as a four-phase procedure
rather than two, which is at contrast to many people’s in-

tuition. Moving directions are indicated using arrows. The
experimental results are illustrated in Fig. 12.

7 Conclusion and future work

In this paper we propose a new kind of motion descriptor
for video frames, and rely on it to measure distance be-
tween video frames and sequences. Various experiments
are presented to exhibit its effectiveness. However, how to
refine the motion estimation quality and exploit the spatial
configuration in the motion field is less discussed and left
for further exploration.
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