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Abstract

Isotropic point distribution is crucial in remeshing process to gener-
ate a high-quality mesh. In this paper, we present a novel algorithm
of isotropic sampling on two-manifold mesh surface. Our main
contribution lies in the successful generalization of a 2D fast Pois-
son disk sampling algorithm, which makes it able to directly sample
3D mesh surfaces, including feature edges. We adopt geodesic dis-
tance as the distance metric for sampling algorithm in 3D to better
capture the geometry information. Given a density function over the
surface, we derive a close analytic form of the available boundary,
which makes our algorithm support efficient adaptive sampling. To
further improve the isotropy of point distribution, Lloyd relaxation
is performed locally to optimize the location of sampling points.
The whole process guarantees that new vertices lie on the original
surface. Mutual tessellation is utilized to reconstruct the connec-
tivity of new vertices, which guarantees the fidelity and validity of
topology. Experiments show that our algorithm is able to remesh
an arbitrary closed manifold into a high-quality mesh with large
minimal angles and small number of irregular vertices.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: sampling, Poisson disk, surface remeshing

1 Introduction

Triangle mesh has been a prevalent form of 3D model representa-
tion in various areas ranging from modeling to visualization due to
their simplicity and flexibility. In most applications such as finite
element analysis and mesh editing [Yu et al. 2004], the quality of
triangle meshes will greatly influence the stability and efficiency
of numerical computations. High-quality meshes are also desirable
in most existing geometry processing [Botsch et al. 2006]. Some
input triangle meshes though capture shape accurately but have un-
satisfactory quality. Hence, the remeshing process, which improves
the quality of geometry and connectivity of original meshes, has
been developed as a fundamental component of digital geometry
processing.

The newly generated mesh after remeshing process should at least
be valid and best approximate the original surface. As for mesh
quality, the main concerned issues include vertex sampling, grad-
ing, regularity, size and triangle quality [Alliez et al. 2005]. In this
work, we aim to provide a framework for high quality remeshing
which traditionally means to generate a new triangulation from the
input surface and the new mesh is required to possess well-shaped
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triangles, isotropic sampling and smooth grading. It is well known
that isotropic vertex distribution can lead to well-shaped triangles
and thus generate high-quality meshes. Therefore, isotropic sam-
pling is crucial for applications where quality of the mesh elements
is important.

Recent years have seen an explosion of research in surface re-
sampling. Some of them apply uniform or adaptive sampling on
planar parameter domains and then project the sampling points
back to 3D surface, e.g. [Lee et al. 1998; Gu et al. 2002; Al-
liez et al. 2002; Alliez et al. 2003]. However, parameterization
itself is challenging and always introduces severe distortions, es-
pecially for very complicated meshes [Floater and Hormann 2005].
Algorithms that directly sample on 3D surfaces usually involve a
greedy process which gradually inserts new points based on De-
launay refinement [Boissonnat and Oudot 2003; Peyré and Cohen
2006] or a relaxation process that improves initial placement [Turk
1992; Vorsatz et al. 2003; Surazhsky et al. 2003]. Though the
relaxation-based methods can achieve better results than the greedy
approaches, they need lengthier computation and do not provide
certified bounds on the triangle shape [Alliez et al. 2005]. Since
a lot of algorithms that can generate isotropic sampling points on
2D domain have been proposed [Zhou and Fang 2003; Jones 2006;
Dunbar and Humphreys 2006; Kopf et al. 2006; Ostromoukhov
2007], this leads us to extend 2D sampling algorithms to 3D sur-
faces. Previous work by Alliez et al. [2003] attempted to per-
form a discrete error diffusion process on triangle meshes, but
achieved unsatisfactory sampling distribution. Recently, Dunbar
and Humphreys [2006] described a modified Poisson-disk algo-
rithm to generate isotropic point distribution with good spectral
quality in O(n) time. However, their method is currently restricted
to generate uniform point sets in 2D domain.

In our work, we will demonstrate how to extend the method of
[Dunbar and Humphreys 2006] to generate uniform / adaptive
isotropic point distribution directly on 3D meshes. First, we adopt
geodesic distance as the distance metric to precisely capture the ge-
ometry of 3D surface. Second, we derive a closed analytic form
of available boundary for adaptive sampling. These two compo-
nents are the kernel of our extension. As in 2D case, Lloyd iter-
ation is then employed locally on 3D meshes to further improve
the isotropy of point distribution. Our algorithm integrates the ad-
vantages of both greedy sampling and relaxation-based approaches:
the extended Poisson-disk sampling algorithm is expected to pro-
duce nearly isotropic point distribution, which is verified by our
experimental results ; with a good initial placement provided, only
several iterations of local Lloyd relaxation can improve the initial
point set into a precise isotropic distribution, which accelerates the
convergence. When combined with some connectivity optimiza-
tion techniques, our remeshing scheme can generate high-quality
new meshes for arbitrary closed manifolds. In addition, our sam-
pling algorithm supports level of detail and can be applied to object
distribution on 3D surface.

We start by giving a brief overview of related work on resampling
3D mesh surfaces in section 2. Section 3 gives some preliminaries
of our work. In section 4 we first present the algorithm for uni-
form sampling and then extend it to adaptive sampling in section
5. Next we describe the method for sampling points relocation in
section 6. After presenting some experimental results in section 7,
we conclude and mention some topics of possible future research



in section 8.

2 Related Work

In recent years, numerous remeshing algorithms have been reported
in the literature. The remeshing techniques can roughly be di-
vided into two categories: the techniques relying on a parameter
domain [Lee et al. 1998; Gu et al. 2002; Alliez et al. 2002] and
those working directly on the 3D meshes [Boissonnat and Oudot
2003; Schreiner et al. 2006]. Compared with parametrization-based
approaches, the second category avoids the tough mesh partition
process and alleviates the distortion introduced by parametrization,
also there is no need to handle the seams introduced by partition.
Since our algorithm falls into the second category, our review of
related work will focus on this field. For an excellent overview we
refer the readers to [Alliez et al. 2005].

The first type of algorithms performed directly on 3D inserts one
point at a time to refine the newly generated model greedily. Bois-
sonnat and Oudot [2003] carried forward a “furthest point” strategy
to progressively insert a new point at the center of the biggest void
and update the 3D Delaunay triangulation simultaneously. This al-
gorithm was later improved by Cheng et al. [2004] to achieve bet-
ter efficiency. Since the sampling rules of [Boissonnat and Oudot
2003] and [Cheng et al. 2004] are both based on Delaunay / Voronoi
geometry with Euclidean distance metric, triangles with small min-
imal angle may still exist in the final Delaunay triangulation re-
sults. The avoidance of such situations requires better selection of
the location of sampling points. Based on front propagation with
geodesic distance metric, Peyré and Cohen [2006] extended the fur-
thest point sampling algorithm to achieve better results. Since this
is a greedy algorithm, all the geodesic distance maps should be up-
dated each time a new vertex is inserted, which makes the algorithm
less efficient.

The main alternative to greedy sampling is relaxation-based meth-
ods, which initially place a point set on the surface and then im-
prove the placement through point relocation. Turk [1992] pro-
posed to apply an attraction-repulsion particle relaxation procedure
on the initial placements. By adjusting the force between parti-
cles, vertices of different densities can be sampled on the surface.
However, the time used for computing the solution of the diffusion
equation makes it less efficient. Local area equalization is another
efficient and robust way to generate precise uniform or specified
sampling [Surazhsky and Gotsman 2003], but it fails to provide an
easy way to globally sample the mesh in accordance with a den-
sity function. Other works placed the initial point set by a mesh
adaption process [Yue et al. 2007] or by error diffusion algorithm
on mesh surfaces [Alliez et al. 2003]. Afterwards, Lloyd relaxation
is applied on local overlapping parameterizations [Surazhsky et al.
2003] or on a global parameter domain [Alliez et al. 2003] to im-
prove the initial point distribution. The Lloyd-based algorithm can
generate precise isotropic distribution in accordance with a density
function. However, the initial vertex sampling is delicate to control
and needs to performed with care. Recently, Schreiner et al.[2006]
proposed an algorithm based on advancing-front paradigm to per-
form local remeshing directly on 3D surface or locally to a region
of interest, which can produce high-quality meshes.

3 Preliminaries

The input of our remeshing scheme is assumed to be orientable
two-manifolds of arbitrary genus. In this paper, we mainly focus
on closed meshes, while it is trivial to handle boundary case by a
small modification of our scheme. The input mesh is presumed to
be a piecewise linear approximation of smooth surface, but with

unsatisfactory mesh quality.

(a) (b)

Figure 1: Feature edges detection of two models

For meshes with sharp features, such as CAD models, the features
must be preserved after remeshing. Before sampling, we should
extract a set of feature edges and corners from the input mesh first.
Since the input mesh is a discrete approximation of the underlying
smooth surface, feature extraction may be sensitive to noise. We
adopt the method proposed by Jiao and Heath [2002] which can
perform efficient and reliable feature detection. Strong edges on
a discrete mesh are first identified by the dihedral angles of edges
and artificial feature edges are removed by checking the geometry
of neighborhood. As shown in Figure 1, skeleton for CAD model as
well as ridges and corners for smooth models can be retrieved from
discrete meshes. Both feature edges and corners require special
treatment during the subsequent processing.

4 Poisson-Disk Sample on 3D Meshes

Poisson disk distribution is regarded as one of the best sampling pat-
terns for its blue noise property [Dippé and Wold 1985; Cook 1986;
Lagae and Dutré 2006b]. Many approaches have been developed to
generate Poisson disk distribution [McCool and Fiume 1992; La-
gae and Dutré 2006a; Kopf et al. 2006; White et al. 2007]. The
fast Poisson-disk sample generation algorithm proposed by Dun-
bar and Humphreys [2006] is efficient to directly generate maximal
Poisson-disk distribution with excellent blue noise characteristic.
In this paper, we aim to extend this fast sampling algorithm to two-
manifolds in 3D so that it can generate isotropic point distribution
on mesh surface. Before describing our algorithm, we will give a
short review on the fast 2D Poisson-disk sampling algorithm first.

4.1 Fast Poisson-disk Sample Generation in 2D Do-
main

Dart-throwing [Cook 1986] is one of the simplest but slowest tech-
niques to generate Poisson-disk distribution. It iteratively refines
an existing point set by generating random point locations in the
sample domain. A point is discarded if there already exists an-
other point within a disk with certain radius r of it. This ap-
proach is slow because it wastes a lot of time to generate points
that might be discarded. Moreover, the generated point set is usu-
ally not maximal, i.e., some region may be undersampled. To al-
leviate this problem and make the approach more efficient, Dunbar
and Humphreys [2006] developed a modified dart throwing algo-
rithm – maximized boundary sampling. It runs in O(n) time and
is guaranteed to terminate. The essential idea of their method is to
allow sampling only the regions where it is legal to place a dart.
The sub-domain within which it is legal to add a new point is called
available domain. Let D(p, r) be a disk of radius r around a point
p. We name the disk as expellant disk. Then, the available domain



for a domain X and a point set P is:

SX = X −
⋃

p∈P

D(p, 2r)

Based on the observation that it is not necessary to sample the en-
tire available domain, Dunbar and Humphreys further restricted
the available region for a single point into an available boundary
B(p, r) – the boundary of expellant disk. Then the available bound-
ary of a new point p for P can be defined as:

Bp = B(p, 2r) −
⋃

p′∈P

B(p′, 2r)

The entire available boundary is B =
⋃

p∈P
Bp, which is com-

posed of a set of circular arcs. Figure 2 illustrates the entire avail-
able boundary after three points are inserted.

Figure 2: Available boundary of three points

4.2 Uniform Poisson-disk Sample over 3D Mesh Sur-
face

To extend the fast Poisson-disk sampling algorithm to 3D surface,
an associated distance metric should be well defined. Because the
models to be processed may contain various details, it is not ideal
to simply use Euclidean distance in R3 to compute distance over
the surface. Euclidean distance approximates geodesic distance,
namely the distance metric between the points along the surface,
only in regions of low curvature. Otherwise, they are of great dif-
ference. In order to achieve precise isotropic sampling on surface,
we adopt geodesic distance as the distance metric. Thus the avail-
able boundary of a sampling point on 3D surface will be a geodesic
equidistant curve.

Suppose the input mesh M is closed, the Poisson-disk sampling
algorithm over 3D mesh can be proceeded as the following steps:

1. Randomly choose a point p0 on the surface as the first sample
point;

2. Compute the equidistant curve B0 of p0 on M using the
method described in section 4.2.2. The radius of the equidis-
tant circle is 2r, where r is the radius of expellant disk and
can be deduced from the formula given in section 4.2.1. B0

will act as the initial set of available boundary;

3. Generate a random point pi on the available boundary [An-
derson 1993];

4. Compute the equidistant curve of pi and update the available
boundary as described in section 4.2.3;

5. Repeat steps 3 and 4 until the set of the entire available bound-
ary is empty;

Our approach progressively inserts new vertices onto the surface.
After termination, the distribution on M will be uniform in terms
of geodesic distance. Adaptive sampling in accordance with density
will be discussed in section 5.

4.2.1 Relationship Between Density and Disk Radius

Suppose that N is the number of points over a unit domain on M.
The absolute radius r of the expellant disk around each vertex is
defined as [Lagae and Dutré 2006b]:

rmax =

√

1/(2
√

3N), r = ρ · rmax (1)

where rmax is the maximum possible radius. The density is as-
sumed to be linearly proportional to the density in the case of com-
pact packing by hexagonal lattice and ρ is usually a constant for a
specific algorithm. The assumption is validated by our experiments
in uniform sampling case. The value of ρ will also be deduced in
the experiments as shown in section 7.

4.2.2 Computing Geodesic Equidistant Curve

We use the algorithm proposed by Surazhsky et al. [2005] to com-
pute the geodesics on meshes. It can compute geodesic distance
accurately and efficiently. The kernel of the algorithm is a “win-
dow propagation” scheme. A window is actually an interval on the
mesh edge. Each window is associated with a source vs ( also a
pseudosource s for saddle points). The geodesic paths in the same
window pass the same sequence of triangle stripes and can be un-
folded into the same plane. Thus, the distance field D(p) over a
window w : (b0, b1) is explicitly defined as:

D(p) = ‖p − s
′‖ + σ (2)

where s′ is the unfolding of vs or s on the plane w lies in, σ is the
geodesic distance between vs and s. In our application, vs is the
newly sampled point.

To compute the distance from a source point to all the vertices on
a mesh, the windows propagate in a wavefront way implemented
by a priority queue. Since we only need to compute the equidis-
tant circle, it is not necessary to perform window propagation until
the whole mesh is covered by windows. If the minimum distance
of w to vs is greater than 2r, then the window is not pushed into
the priority queue for further propagation. This strategy makes the
propagation terminate faster.

Equidistant circular arcs only exist in those windows whose maxi-
mum distance is no less than 2r. For this kind of windows, a circle
with radius of 2r is intersected with the triangle formed by the end-
points of the window and its unfolded source to extract the inter-
section circular arcs. The union set C may contain point set whose
geodesic distance to the source is less than 2r, because the distance
field for points that are interior of the same triangle may overlap,
see Figure 3(a) for example. To eliminate these artificial equidis-
tant circular arcs, the arcs in the same triangle are intersected with
each other, and the arc portions that lie in the sector of other arcs
are trimmed. The remaining arcs will form a closed path that con-
stitutes the equidistant curve. Figure 3(b) shows multi-equidistant
curves with increasing distance on a cat model.

4.2.3 Updating Available Boundary

Assume that the circular arcs in the available boundary are ar-
ranged in clockwise order from end to end. After the equidistant
curve Bnew of a new sample point is extracted, the whole avail-
able boundary Bwhole should be updated accordingly. Bwhole may
contain some separate closed curves.
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Figure 3: (a) ρ12 and ρ22 should be scissored because they lie in
the sector of other arcs. (b) Some equidistant curves on a cat model.

To update Bwhole, we first compute the intersection points of Bnew

and Bwhole. Since each arc that constitutes the available boundary
is situated within only one triangle, the intersection computation
can be localized by performing the intersection only for those arcs
situated in the same triangle. After the intersection, Bwhole and
Bnew are divided into different parts at the intersection points. In
this way, the parts that are to be kept and to be discarded are ar-
ranged alternatively. That is, if an arc part is to be kept/discarded,
then its adjacent part must be discarded/kept.

For each arc, we record the index of the triangle it lies in. The
indices set of the triangles that Bwhole covers is denoted as Twhole.
Similarly, the indices set of Bnew is recorded as Tnew . To accelerate
the update process, we adopt the following strategies to determine
which part of circular arcs is to be discarded or to be kept for each
closed curve in Bwhole:

• If there is one arc Bk whose triangle element Tk satisfies:
Tk ∈ Twhole but Tk 6∈ Tnew , then the arc must be outside the
covered region of Bnew , therefore Bk must be kept.

• If Twhole ⊆ Tnew , we find in Bwhole the arc Bk that the new
sample lies in. Since Bk must lie in the interior region of
Bnew , Bk must be discarded.

• If both of the above two strategies fail, we get the midpoint q
of the longest arc Bk in Bwhole. Then the region that Bnew

covers is conformally parameterized to 2D plane [Desbrun
et al. 2002]. Bnew and q are also mapped into the parameter
domain as B′

new and q′. We count the number N of inter-
section points between B′

new and a line passing q′. If N is
odd, then Bk lies in the region covered by Bnew and must be
discarded. Otherwise, Bk is kept.

After determining the property of Bk, the property of the arc part
containing it has the same property with it. Afterwards, all the arc
parts in Bwhole can be determined to be kept or discarded by as-
signing different properties to adjacent parts.

To determine the properties of arcs in Bnew , we first find the loca-
tion of an intersection point q0 in Bnew . Since all the arcs in the
available boundary are arranged in clockwise order, we can deter-
mine the property of the arc B′

k which begins with q0 by the role of
q0 in the kept part of Bwhole: If q0 is a start point in the kept part of
Bwhole, then B′

k should be discarded, or it will be kept. Afterwards,
the properties of the rest arcs in Bnew can also be determined in the
same way as those in Bwhole.

Figure 4 illustrates the results of uniform Poisson-disk sampling
with different densities over a 3D mesh surface. Since the radius
of expellant disk in Figure 4(a) is double of that in Figure 4(b), the
number of samples in Figure 4(b) is four times as many as that in
Figure 4(a) as expected.

(a) 212 samples (b) 847 samples

Figure 4: The model is uniformly sampled with different densities.
The radius of expellant disk in (a) is double of that in (b).

4.2.4 Feature Preservation

If there are feature edges and corners on the surface, they should be
preserved in the result. Dense sampling on features not only sig-
nificantly increases the number of sampling points but also causes
aliasing problems. In order to preserve the features, we perform
1-dimensional feature sampling before random sampling. Firstly,
the feature corners are sampled and their available boundaries are
computed. Then, we distribute sampling points on the feature edges
with uniform intervals and compute the available boundary of each
point. Finally, the available boundaries of feature corner samples
and feature edge samples are united to act as the initial available
boundary for random sampling (See Figure 5 for example).

Figure 5: The set of closed curves is the available boundary after
sampling the features on the Fandisk model, and the red dots are
the sampling points on the features.

5 Adaptive Poisson-Disk Sampling

The algorithm presented in section 4 samples the input mesh with
expellant disk of constant radius, which results in uniformly dis-
tributed sampling points. The overall density of the sampling point
set is inversely proportional to r which can be adjusted to tune the
density of the point set. Therefore, our approach can be extended to
adaptive sampling. Since the radii of points in different regions on
surface are different, the available boundary for a point is no longer
a geodesic equidistant curve.

5.1 Available Boundary of Adaptive Sampling

Assume that the density function d over M is specified by user or
deduced from geometric quantity (e.g. curvature) measured on the
given discrete model. In our experiments, we use differential geom-
etry techniques [Rusinkiewicz 2004] to estimate curvature on each
vertex. The user can control the final mesh gradation by specify



a gamma function and the parameters of a low-pass filter over the
density function. Since the curvature is approximated by discrete
techniques, it may be sensitive to both geometry and connectivity
of M, especially for those meshes with sparse vertices. Hence a
Laplacian smoothing is applied on d to achieve smooth gradation
(Figure 6).

(a) (b)

Figure 6: Density map before(a) and after(b) Laplacian smoothing

Till now, the density d(pi) on each vertex pi is well-defined,
accordingly the radius r(pi) of its corresponding expellant disk
can be deduced by Eq.1. Also the radius of an arbitrary point
on surface can be calculated by linear interpolation. Suppose
Ti = (pj1 ,pj2 ,pj3) is a triangle on M. (All the coordinates
used in this section are expressed in the local 2D coordinate of the
plane where Ti lies.) The corresponding coordinates of pjk

are
(xk, yk), k = 1, 2, 3. Let p = (x, y) be a point inside Ti, then the
expellant disk radius of p can be written as:

r(p) = r(x, y) = ax + by + c′ (3)

It can be deduced that a, b, c′ are determined linearly by r(pk) and
the coordinates of pjk

, k = 1, 2, 3.

Suppose the sample point is p0. The available boundary over 3D
surface is essentially defined to be the set of points p whose dis-
tance to p0 is the sum of the expellant disk radii at p and p0.
When combined with Eq. 2 and Eq. 3, the available boundary of
p0(x0, y0) is expressed as follows:

‖p − p0‖ + σ = r(p0) + ax + by + c′ (4)

let c = r(p0) + c′ − σ, then the above equation of the available
boundary can be written as:

(x − x0)
2 + (y − y0)

2 = (ax + by + c)2 (5)

That is, the available boundary is the x-y plane projection of the
intersection between a cone z =

√

(x − x0)2 + (y − y0)2 and a
plane z = ax+by+c, which means the projection is a conic curve.
Therefore, the available boundary of adaptive sampling points is
composed of conic arcs.

5.2 Finding the Available Boundary

The approach of finding available boundary is similar to the algo-
rithm described in section 4.2.2, but a small modification is needed,
since the available boundary is no longer an equidistant curve. In
the uniform sampling case, the termination condition of window
propagation is judged by the minimum geodesic distance of the
window. While in the adaptive sampling case, we judge the ter-
mination by intersecting the conic of the source s with the triangle
formed by s and the endpoints (q1,q2) of the window.

If intersection exists, yet none lies on the window, we do not prop-
agate the window further. If there is at least one intersection point
lying on the window, the window is put into the priority queue for
further propagation. In the situation that there is no intersection,

we test if the geodesic distance from q1(or q2) to s is larger than
r(s) + r(q1)(or r(s) + r(q2)). If the judgement is true, the prop-
agation terminates, otherwise, it continues. This modified window
propagation is also performed until the priority queue is empty.

6 Sampling Points Relocation

Precise isotropic sampling can be achieved by Lloyd relax-
ation [LLOYD 1983], which has been proved quite successful in 2D
sampling, e.g. [McCool and Fiume 1992; Ostromoukhov 2007], be-
cause Lloyd relaxation minimizes an energy related to the compact-
ness of Voronoi cells and distributes the energy equally in each cell
[Gersho 1979]. Weighted centroidal Voronoi diagrams [Du et al.
2006] even allows to define a density function for each Voronoi
cell.

As in the 2D sampling algorithm, we will also apply a few passes
of Lloyd relaxation to the point set to improve the isotropy. Before
Lloyd relaxation, the connectivity of the sampling points should
first be recovered. There are many mesh reconstruction algorithm
proposed for point sets [Hoppe et al. 1992; Cheng et al. 2004], but
they cannot guarantee the topology unchanged, especially for those
tubular shapes, such as tails and legs of animals, see Figure 7 for
example. In this paper, we will reconstruct the mesh by mutual
tessellation [Turk 1992], which makes use of the topology informa-
tion of the input mesh and can guarantee the topology of remeshed
surface.

Figure 7: Topology is not guaranteed after reconstructing from the
sampling point set.

6.1 Mesh Reconstruction From Sampling Point Set

To restore the connectivity, we incorporate both the sampling points
and the original vertices on the input surface. First, all the sampling
points are inserted into the mesh by splitting the triangles they lie in,
which may produce a lot of skinny triangles. To make the algorithm
more stable, we perform a run of edge flip on the new mesh I to
improve the triangle quality. An edge is a candidate flipping edge if
the flip will increase the minimal angle of the triangles sharing the
edge. To guarantee the validity of topology, the edge can be flipped
if the new edge after flipping does not exist in the original mesh and
the change of normal direction and dihedral angle cannot exceed an
angle of β and γ respectively. The value of β and γ can be specified
by the user. If the above requirements are not met, topology errors
might occur.

In the second step, the original vertices are removed from I. Sup-
pose v is the vertex to be removed and vi, i = 1, · · · , m are the
1-ring neighboring vertices of v. We parameterize the neighbor-
hood to 2D domain in the following way [Floater 1997]: Assume
p,p1, · · · ,pm are the projections of v,v1, · · · ,vm respectively.
We first set p = 0 and p1 = (‖v1 − v‖, 0), then compute



pi, i = 2, · · · , m sequentially to satisfy:

‖pi − p‖ = ‖vi − v‖,

ang(pi,p,p1) =

∑

i−1

j=1
ang(vj,v,vj+1)

∑

m

j=1
ang(vj,v,vj+1)

· 2π

The parameterized sub-mesh S ′(v) can well preserve the original
shape of triangles. After removing p, the left part is tessellated by
constrained Delaunay triangulation [Shewchuk 1996] with restric-
tions that no new edges are generated out of S ′(v) and the bound-
ary edges of S ′(v) must be included in the final triangulation. With
these restrictions, even concave polygon can be handled correctly.
Then the triangulation is projected back to I.

To guarantee the topology fidelity of the new mesh, extra check
should be made during removing to avoid that two sides of the sur-
face are accidentally joined together, which often occurs in a tubular
region formed by a few polygons. For example in Figure 8, if ver-
tex V is removed and edge CE is generated in the re-triangulation,
the mesh will be changed into a non-manifold one. We check this
problem by examining whether the newly generated edge already
exists in the k-ring neighborhood of V . k is set to 3 in our imple-
mentation. If the problem occurs, the vertex is not removed. The
mesh obtained after all original vertices are removed is denoted as
M′. Figure 9(d) shows an example M′ of a Maxplanck model.

V

A

B C

D

E

Figure 8: Topology may be changed after V is removed (See sec-
tion 6.1 for detail). The solid lines show 1-ring neighborhood of V .
The dotted mesh is a part of surface below V .

6.2 Vertex Location optimization by Lloyd Relaxation

To optimize the location of the sampling points in our algorithm,
Lloyd relaxation is performed locally to move each non-feature
sampling point vi in M′ to the center of the centroids of the ad-
jacent faces of vi, i.e. the weighted center of Voronoi Tessellation.
This strategy is similar to [Alliez et al. 2003; Surazhsky et al. 2003;
Yue et al. 2007] in spirit.

Instead of work explicitly on the Voronoi diagram, the relaxation is
performed on the dual triangulation. First, the 1-ring neighborhood
of v is parameterized into 2D domain in the same way as we have
used in section 6.1. Then the Voronoi region of p is constructed in
the parameter domain and p is moved to :

p
′ =

∑m

j=1
d(j) · cj

∑m

j=1
d(j)

(6)

where cj is the centroid of the j-th triangle Tij
incident on vi, and

d(j) is the density of cj , which can be linearly interpolated in Tij
.

If the sub-mesh is concave, the new position of p′should be guaran-
teed to lie in the sub-mesh with some perturbations. Afterwards, p′

is projected back to the input mesh surface using the method pro-
posed in [Surazhsky et al. 2003] to prevent shape derivations. Then
vi is moved to the new location. To maintain the local Delaunay
property, edge flip in 3D is performed after several steps of Lloyd
relaxation.

After a run of Lloyd relaxation, the isotropy of the sampling points
will be improved effectively. Usually about 3 runs of relaxation are
enough to generate weighted centroidal Vornoi tessellation, thus
producing precise isotropic sampling. By redistributing the sam-
pling points, the regularity of triangle faces is also improved (See
Figure 9(e)).

6.3 Mesh Connectivity Optimization

Edge flip operation is always used to improve the regularity of mesh
connectivity [Alliez et al. 2002; Yue et al. 2007]. A non-feature
edge is flipped if the flip reduces the following energy function:

E(M) =
∑

v∈M

(d(v) − o(v))2 (7)

where d(v) is the degree of v and o(v) is the ideal degree of v. Most
researchers set o(v) to 4 for boundary vertices and 6 for interior
ones. In our work, to maximize the minimal angle and to improve
the regularity of triangle shape, we set o(v) for each interior vertex
as:

o(v) =

∑

i∈Nv
ang(vivvi+1)

60
, (8)

to make each angle approximate its ideal angle of 60◦, where Nv

is the 1-ring neighborhood of v. We then alternate between the
optimizations of geometry and connectivity to improve the mesh
quality.

7 Experimental Results

We have implemented the algorithm proposed in this paper on a
Pentium IV PC(2.8GHz) with 512 RAM. The input mesh can be
remeshed uniformly or adaptively with respect to surface curvature.
In addition, the density for adaptive sampling can be adjusted by
several parameters and can be smoothed to achieve smooth mesh
gradation.

Value of ρ To determine the value of ρ in Eq.1, we first let ρ = 1.
For N = 500 ∼ 5000 per unit with a step of 100, we compute the
corresponding radii by Eq.1 and then sample a unit square domain
with our algorithm. The numbers N ′ of actual sampling points are
recorded and then compared with N as shown in Figure 10(a). It
can be seen that N ′ is approximately linearly proportional to N .
According to the statistics, the average of ratio N ′/N is 0.7124
with covariance of 2.2936 × 10−5. So we adjust ρ to 0.8440(the
square of 0.7124) and recompute the radii. The actual numbers
of sampling points are well coincident with the ideal ones. Fig-
ure 10 (b) shows the curve of Eq.1 and the experimental relation-
ship between radii and actual number of sampling points. These
two curves fit well. Therefore, we can approximately estimate the
expellant radius for sampling from Eq.1 with ρ = 0.8440.
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Figure 10: Estimation of ρ from experiments.



(a) (b) (c)

(d) (e) (f)

Figure 9: Remeshing of Maxplanck model.(a) original model. (b) curvature-adapted sampling points. (c) mutual tessellation result. (d) mesh
after removing original vertices. (e) mesh after Lloyd relaxation of (d). (f) mesh optimized using the method in [Surazhsky et al. 2003].

Examples Figure 9 shows the remeshing process of the Max-
planck model. The original surface is sampled with curvature-
adapted density, as illustrated in Figure 9(b). After reconstructing
from the sampling points (Figure 9(d)), the mesh is optimized by
Lloyd relaxation and edge-flip technique into a high-quality new
mesh (Figure 9(e)). Figure 11 illustrates the uniform remeshing of
a fandisk model with 6475 vertices. The creases and corners of the
model are well-preserved in the new model with 3121 vertices.

Statistics We have also applied our algorithm to various mod-
els with arbitrary genus and complexity. Some of them come from
marching cubes process, and others are results of simplification pro-
cess. The remeshing results are illustrated in Figure 12. To evaluate
the quality of the results, we collected the statistics of the minimal
angles of the resulting triangles. The minimum and the average of
the minimal angles are reported in the second row of each item in
Table 1. For most models, we achieve a minimum angle above 30◦

and the average angles are mostly above 50◦, which indicate the
high quality of the resulting meshes. The quality of the whole mesh
is illustrated with histograms of the angle distribution of all trian-
gles. Since our work focuses on the improvement of triangle shape,
the connectivity regularity is not comparable to some remeshing
approaches, but it can be greatly improved by further up-to-date
connectivity optimizations. The executing time for sampling and
remeshing is also listed in the table. We believe the time cost is ac-
ceptable for remeshing as a preprocess for most applications though
the code has not been optimized. Since each step of our algorithm
ensures that the samples lie on the original surface, the resulting

mesh is expected to have a high fidelity to the original mesh, which
is validated by METRO [Cignoni et al. 1998], a tool used to mea-
sure the error between two models. Results show most remeshing
errors are within 10−3.

Comparison We also compare our remeshing algorithm with the
one proposed in [Surazhsky et al. 2003]. With the same density
definition, we used the vertices on the original surface as the initial
sampling and then solely applied Lloyd relaxation on it. Since the
initial sampling process is omitted, the implementation of algorithm
in [Surazhsky et al. 2003] is much more efficient than ours. Most
of the running time of our algorithm is spent on the initial vertex
placement. The time of placement optimization in both algorithms
is nearly same. The result mesh of Maxplanck model is demon-
strated in Figure 9 (f). It is shown that our sampling algorithm
can control the placement of vertices better. Since the samples are
generated according to the density map over the mesh surface, our
algorithm cannot provide exact control on the number of generated
samples. The statistics of regularity of shape and connectivity are
shown in the third row of each item in Table 1, which shows our
algorithm can provide better results.

Discussion of stability It is know that the computation of
geodesic distances on low quality meshes might lead to numerical
instabilities. In our implementation, we also find that the geodesic
isoline of a sample might be not closed when the radius is too large,
which will cause the failure of the union of available boundary. The
fail rate is around 0.3% on average in our experiments. In this
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Figure 11: Uniform remeshing of Fandisk model. (a)Original model (b) the remeshed model. Details are shown in (c-d).

(a) Horse (b) Dinosaur (c) Triceratops (d) Maneki

(e) Hygiea (f) BumpyTorus (g) Rocker-arm (h) Nine-Torus

Figure 12: Comparison between models before and after remeshing

case, we simply discard the sample. Since the sample is selected
randomly, this would not cause any problem but make our algo-
rithm more robust. The random sequence [Anderson 1993] used in
our implementation will generate a new sample with less probabil-
ity that the next sample is close to the previous one geometrically,
which reduces the probability of failure of the new sample.

8 Conclusion and Future Work

We have proposed a novel technique to generate isotropic sampling
on a two-manifold triangle mesh. By successfully extending the
fast Poisson-Disk sampling algorithm to 3D mesh surface, we can
generate uniform or adaptive distributions directly on 3D manifold
surface. Thanks to the isotropy of point distribution generated by
our sampling algorithm, only a few runs of relaxation are needed
to optimize the precise location of the sampling points, which not
only guarantees the quality of triangle shape but also makes the pro-
cedure more efficient. The regularity of geometry and connectivity
is also improved in the process of Lloyd iterations combined with
edge-flip technique. As illustrated in the experimental results, the
result meshes after remeshing are of higher quality compared with
Lloyd-standalone techniques, although we paid higher computation
time. Since most of the time cost is spent on the computation of
the accurate geodesic isolines, it can be reduced by approximately

compute the geodesic isolines as the available boundary.

The samples are centered in the expellant disks, therefore the pro-
posed sampling technique can also be applied to perform object dis-
tribution on 3D mesh surfaces. Moreover, progressive multi-level
sampling is easy to achieve by gradually reducing the radius and
recomputing the available boundary after a coarser level sampling
is finished. In this way, all the vertices in the lower-detailed models
will be present in the models with more details, which can be used
to smoothly interpolate between the different levels of detail.

As future work, we plan to investigate the way to generate
anisotropic sampling points on 3D surface. In anisotropic case, the
expellant region will not be a disk but an elliptical region. How to
define the ellipse according to the directions of principle curvature
is remained to be explored.
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Model Vertex number Minimum 6 Average 6 Angle histogram Irregular rate Time cost(s)

Maxplanck(original) 6143 3.577
◦

36.29
◦ 0.61

Maxplanck(our) 7601 32.33
◦

52.17
◦ 0.260 222

Maxplanck([Surazhsky et al. 2003]) 6143 23.53
◦

48.32
◦ 0.29 8.4

Horse(original) 5064 6.75
◦

39.47
◦ 0.415

Horse(our) 3017 35.70
◦

51.91
◦ 0.274 103

Horse([Surazhsky et al. 2003]) 5064 19.83
◦

46.97
◦ 0.337 5.5

Dinosaur(original) 5903 1.68
◦

34.21
◦ 0.597

Dinosaur(our) 3365 31.01
◦

51.87
◦ 0.276 68

Dinosaur([Surazhsky et al. 2003]) 5903 26.92
◦

49.46
◦ 0.313 4.4

Triceratops(original) 2832 0.002
◦

29.57
◦ 0.593

Triceratops(our) 6529 27.54
◦

51.62
◦ 0.285 133

Triceratops([Surazhsky et al. 2003]) 2823 15.67
◦

47.13
◦ 0.316 6.2

Maneki(original) 5027 0.784
◦

33.79
◦ 0.607

Maneki(our) 4139 31.32
◦

52.00
◦ 0.253 112

Maneki([Surazhsky et al. 2003]) 5027 24.54
◦

47.29
◦ 0.302 6.7

Hygiea(original) 4500 1.265
◦

34.94
◦ 0.65

Hygiea(our) 3092 35.43
◦

51.99
◦ 0.257 113

Hygiea([Surazhsky et al. 2003]) 4500 29.18
◦

50.10
◦ 0.308 4.3

BumpyTorus(original) 10417 0.47
◦

35.92
◦ 0.497

BumpyTorus(our) 4236 31.74
◦

51.76
◦ 0.287 416

BumpyTorus([Surazhsky et al. 2003]) 10417 14.77
◦

47.33
◦ 0.282 16.1

Rocker-arm(original) 3431 0.042
◦

34.07
◦ 0.638

Rocker-arm(our) 3551 31.63
◦

51.53
◦ 0.275 106

Rocker-arm([Surazhsky et al. 2003]) 3343 18.40
◦

48.43
◦ 0.354 5.6

Nine-Torus(original) 4688 1.55
◦

32.5
◦ 0.69

Nine-Torus(our) 4040 32.55
◦

51.86
◦ 0.284 128

Nine-Torus([Surazhsky et al. 2003]) 4688 24.67
◦

48.52
◦ 0.314 3.8

Table 1: Statistics of resulting meshes. The histograms are shown with the same proportion of width and the red bars in the histogram show
the position of 60◦
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