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Abstract

In recent years, local pattern based object detection and
recognition have attracted increasing interest in computer
vision research community. However, to our best knowledge
no previous work has focused on utilizing local patterns for
the task of human detection. In this paper we develop a
novel human detection system in personal albums based on
LBP (local binary pattern) descriptor. Firstly we review the
existing gradient based local features widely used in hu-
man detection, analyze their limitations and argue that LBP
is more discriminative. Secondly, original LBP descriptor
does not suit the human detecting problem well due to its
high complexity and lack of semantic consistency, thus we
propose two variants of LBP: Semantic-LBP and Fourier-
LBP. Carefully designed experiments demonstrate the su-
periority of LBP over other traditional features for human
detection. Especially we adopt a random ensemble algo-
rithm for better comparison between different descriptors.
All experiments are conducted on INRIA human database.

1. Introduction
After face detection techniques has become practical,

human detection in still images and videos is becoming the
focus of the computer vision research community. A robust
and fast human detector is especially useful for various vi-
sion applications. However, due to high variations of cloth-
ing, pose, lighting conditions, and cluttered backgrounds in
common personal albums, the task of human detection is
rather challenging.

Popular approaches for human detection can be divided
into two categories: part based methods or sub-window
based methods. The former relies on a human model with
geometrical constraints, a more comprehensive introduc-
tion for which is referred to [14]. The latter category ex-
haustively searches every subwindow within an target im-
age, performing a 0/1 testing, i.e. with or without human
in it. The most representative work can be found in [5],
where overlapped and dense local descriptors based on ori-
ented per-pixel gradients (HOG) are extracted and trained
via Support Vector Machine (SVM). Consequent work [20]

uses the cascade strategy [15] for acceleration.

Our method belongs to the second category. Roughly
speaking, there are two complemental directions for the
sub-window based methods: building more discriminative
and compact local features ([5], [14]), or developing more
powerful learning algorithms beyond traditional AdaBoost
([16]), both of which are still open issues for human detec-
tion. In [14], covariance tensor feature (in this paper we will
use COV for it) based on the correlation between pairwise
sub-features was proposed and obtain better results than [5]
and [20]. However, it is important to notice that the adopted
learning strategies significantly affect the final detecting ac-
curacy as well as the feature type. Since the authors in [14]
use logitBoost, another variant of the boosting algorithm, it
is difficult to judge whether the proposed COV feature or
logitBoost makes more contribution. In this paper we will
avoid this ambiguity via a random learning method named
RandomEnsemble for better comparison between different
types of features.

The main contribution of our work is along the first di-
rection, i.e. we focus on building more powerful features for
human detection. In recent years, increasing interest is paid
on investigating image’s local patterns for better detection
and recognition. Especially, local patterns that are binarized
with adaptive threshold provide state-of-the-art results on
various topics, especially on face recognition and face de-
tection ([10],[18]). Here we propose several variants of the
original LBP (local binary pattern) feature; these new fea-
tures can work in perceptually color space and prove more
suitable for the human detection task. Based on both the-
oretic analysis and various experiments, we argue that lo-
cal color configuration can provide more information than
solely intensity gradient. Compared to the gradient based
features (Wavelet, HOG and COV), LBP is much more ac-
curate, sparse and easy to be computed.

The paper is organized as follow. In Section 2, we pro-
vide an introduction to the LBP-based region descriptor and
other related features for human detection. In Section 3,
for completeness we briefly review the human detection
methodology. Experiments are provided in Section 4.
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Figure 1. Illustration of LBP. Typically the binary codes obtained by local thresholding are transformed into decimal codes. Note that in
this example we use a threshold of 30, which is slightly different from the original LBP. See text for more details.

2. Region Description with LBP
2.1. Basic idea of LBP

The idea of LBP (local binary pattern) is originally pro-
posed by Ojala et al. in [11] for the aim of texture clas-
sification, and then extended for various fields, including
face recognition ([2]), face detection ([10]), facial expres-
sion recognition [19] etc. The most attractive advantages
of LBP are its invariance to monotonic gray-scale changes,
low computational complexity and convenient multi-scale
extension. The philosophy behind LBP is simple and ele-
gant: unify statistical and traditional structural methods.

In Figure 1, we give an illustration for how LBP serves as
local descriptor. Each neighbor pixel is compared with the
center pixel, and the ones whose intensities exceed the cen-
ter pixel’s are marked as ”1”, otherwise as ”0”. In this way
we get a simple circular point features consisting of only
binary bits. Typically the feature ring is unfolded as a row
vector; and then with a binomial weight assigned to each
bit, the row vector is transformed into decimal code for fur-
ther use. For clarity, we adopt the same notation LBPP,R

as in [1], where R is the radius of the circle to be sampled
(see Figure 2), and P is the number of sampling points. Ex-
amples for various choices of these two parameters can be
found in Figure 2. It is obvious to see that LBP can be ef-
fortlessly extended to the multi-scale case.

Denote the ring feature for image pixel (x, y) as
B(x, y) =< bP−1, . . . , b1, b0 >, where bi ∈ {0, 1}. It
is common to transform B(x, y) into decimal code via bi-
nomial weighting:

LBPP,R(x, y) =
P−1∑

i=0

bi2i, (1)

which characterizes image textures over neighborhood of
(x, y). And a 1D histogram for an target image region

can be built by counting the frequencies of each value of
LBP codes, which is finally normalized with L1-norm or
L2-norm as image region representation.

An important special case of LBP is the uniform LBP. A
LBP descriptor is called uniform if and only if at most two
bitwise transition between 0 and 1 over the circulated binary
feature. For example, 00000000 (0 transition), 11100011
(2 transitions) are uniform, while 01010000 (4 transitions),
01110101 (6 transitions) are non-uniform ones. An impor-
tant observation was made by Ojala et al. [11] that in texture
images, majority of LBP features can be categorized to be
uniform. In practice, all non-uniform LBP are labeled with
a single label, while each uniform LBP is cast into a unique
histogram bin according to its decimal value.

Figure 2. Multi-scale LBP. R: radius of sampling circle. P : num-
ber of sampling pixels.

2.2. Related works

Several region descriptors based on simple local features
have been extensively used for human detection in still im-
age, we will briefly review them first (we ignore the Harr
feature for the consideration of space; a detailed discussion
about it can be found in [5]):

HOG (Histogram of Gradient) ([5], [6], [20]) can be re-
garded as a simplified version of SIFT. It computes intensity
gradients from pixel to pixel. For each pixel, it selects cor-



responding histogram bin according to gradient direction,
and determines voting strength as proportional to gradient
magnitude.

COV (Covariance Tensor Feature) ([14]) assumes the
computed tensor descriptors lie on a Riemannian manifold.
For each pixel p, a d-dimensional feature vector zp can be
calculated as:

zp = [x y |Ix| |Iy|
√

I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|

|Iy|+ ε
]T ,

(2)
where (x, y) are pixel coordinates in the image plan. Ix, Iy ,
Ixx and Iyy denote first and second partial intensity deriva-
tives and ε is a small constant for numeric consideration.
The last term is introduced to retain the orientation infor-
mation. Denote index set for target region R as IR, a d× d
covariance matrix can then be computed as:

CR =
1

|IR| − 1

|IR|∑

i=1

(zi − µ)(zi − µ)T , (3)

where µ is the statistical mean of zi. Note that due to the
symmetry of CR, only the upper triangle part need to be
stored, thus possible to be unfolded as a d×(d+1)

2 dimen-
sional vector.

2.3. Comments
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Figure 3. An illustration to highlight the disadvantage of tradi-
tional gradient-based methods. At the intersection point P of
curve A and B. Solely gradient information can hardly discrim-
inate the two (see (a)). However, an investigation about the local
structure around P makes it possible (see (b)). Behaviors along
the multi-scale circles (red or blue circles corresponds to different
scales) for A and B are distinct.

The most important observation for HOG and COV is
that they both work based on first/second image derivatives
(including direction and magnitude), which well capture lo-
cal shape characteristics for the targeted object and can be
fast computed via the Integral Image tricks [15]. For human
detection, the most discriminative human parts - limbs, tor-
sos, maintain a roughly upright pose, while head+neck form
a shape similar to ”Ω”. Against a relative ”clean” back-

ground, those shapes will dominate the gradient histograms
or tensor features.

However, the disadvantages of the gradient-based fea-
tures lie in three-folds. First, gradient sketches the inten-
sity distribution around current pixel in a rather rough style.
Two same gradients may correspond to rather different lo-
cal structures, thus ambiguous. We illustrate this point in
Figure 3 by making an analogy between image gradient and
curve tangent. As in Figure 3, two curves A and B sharing
the same tangent direction may have distinct local distor-
tion. Similarly, neither HOG or COV is able to discriminate
two pixels with similar gradients, although in many cases
they have totally different local textures. On the contrary, in
many contexts such as face recognition, LBP outperforms
gradient method because it provides an implicit and ap-
proximate representation for curvatures on image manifold,
which makes it more discriminative.

Secondly, the target object typically appears in a clut-
tered environment, and the unexpected noises will drasti-
cally degrade the performance. Only gradient information
is insufficient to judge useful points and outliers. On the
contrary, the concept of ”uniform LBP” provides the possi-
bility to effectively remove outliers. In fact, previous work
by Ojala discovers that over 90% local structures in tex-
tured image are uniform in a LBP8,1 neighborhood system,
while for LBP16,2 the percentile is relatively lower yet still
more than 70%. Also we can intuitively imagine that a non-
uniform LBP descriptor indicates a noisy and less informa-
tive local configuration for classifying purpose. For exam-
ple, highly textured image region produces strong response
to gradient filters yet provides little useful information for
the detection task, which is labeled as non-uniform and can
be safely removed with little information loss.

Thirdly, gradient based methods typically drop color in-
formation contained in original images, for it is difficult to
define a metric for colors similar to intensity gradient. For-
tunately, LBP can intrinsically avoid this issue. As an exten-
sion to naive LBP discussed in Section 2.1, we can utilize
the well-defined metric in any perceptually color space to
measure the dissimilarity of two adjacent pixels, rather than
calculating intensity difference, and perform binarization
according to locally adaptive thresholds (as in Figure 1). We
propose two variants of original LBP descriptors to over-
come all above-mentioned problems.

2.4. Our proposed LBP descriptors

As argued above, LBP has advantages over other features
for the applications like human detection. However, previ-
ous LBP operator in [1] does not suit the human detection
problem well, thus we propose two variants of LBP, named
S-LBP and F-LBP respectively.
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Figure 4. Computing S-LBP. Note that the ring feature has two
segments of arches, thus a non-uniform one will be abandoned in
practice. See text for more details. This figure is best viewed in
color.

2.4.1 S-LBP (Semantic LBP)

The uniform LBP descriptor defined in Section 2.1 has a
space complexity on order of O(P 2), i.e. the histogram for
LBPP,R has about P (1− P ) bins, which increases rapidly
with P . For example, LBP8,1 needs 56 bins, LBP12,1.5

needs 132 bins and LBP16,2 needs 240 bins. Although
longer feature vector is more sparse and discriminative, it
has huge storage requirement on the other hand. For hu-
man detection, typically in each iteration there are > 10K
training samples and approximately 200 candidate subwin-
dows; even a 64 dimensional feature representation in dou-
ble floating precision will takes roughly 1.2G memory. A
novel LBP representation that can be intuitively understood
and flexibly controlled will be more favorable.

Moreover, for the histogram built according to binary
ring feature’s decimal codes, there is no guarantee that se-
mantically similar features must fall into spatially nearby
histogram bins. For example, 10000111 and 00001111 are
similar since the latter actually differs from the former by
45◦ (remember LBP feature has a topology of ring). How-
ever, their decimal codes have a large distance (135 v.s. 15).
Also, in many scenarios, low-pass filtering for histogram is
needed to mitigate image aliasing, while original LBP fails
for it.

To attack above issues, we propose the Semantic-LBP
(S-LBP). Instead of decimal coding, we redefine LBP based
on the following geometrical interpretation: several contin-
uous ”l” bits form an arch on the sampling circle, which can
be compactly represented with its principle direction and
arch length. See Figure 4 and 5 for illustrations. The new
representation has a space complexity of |α| × |l| (i.e. the

product of quantized arch angle/length bin numbers), which
is unrelated to P and can be much easily controlled.

In practice, first we perform the binarizing on color space
such as CIE-LAB. Neighbors whose distances to the central
pixel exceed local threshold are marked as ”1”, else ”0”.
After that we count the number of arches, and non-uniform
ones (i.e. having more than one arches) are abandoned. 2D
histogram descriptor for any image region can be obtained
by collecting information from all its inner pixels. Finally
we perform ”matrix-to-vector alignment”, concatenate each
column of the 2D histogram to get a 1D vector.
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Figure 5. Illustration for the semantic meaning of S-LBP. We draw
the corresponding local shapes for four selected histogram bins.
This figure is best viewed in color.

2.4.2 F-LBP (Fourier LBP)

Sometimes ”soft” LBP is useful, i.e. skipping the binarizt-
ing step when calculating LBP. Merits of this kind of rep-
resentation lie in two-folds: first and most importantly, it
avoids the potential errors caused by improper local thresh-
olding. Secondly, controllable compression is possible.

We design a soft version of LBP via similar idea to the
Fourier boundary descriptor [9]. Let S = {s(k), k =
0 . . . P − 1} denote raw feature vector, where s(k) is real-
valued color distance between the k-th samples and central
pixel. From a signal processing point of view, this soft ring
feature can be regarded as an infinite periodic signal. We’d
like to transform S into frequency domain, denoting it as
A = {a(u), u = 0 . . . P −1}. Coefficients for low frequen-
cies are more useful since they capture salient local struc-
tures around current pixel, and lossy compression can be
obtained via dropping some highest frequency coefficients,
which are supposed to make less contribution for detection
and recognition task. For multi-scale LBP with large sam-
pling number P , such compression is quite meaningful. In
implementation, we apply one-dimensional DFT (discrete
Fourier transform) to S via the following formula:

a(u) =
1
P

P−1∑

k=0

s(k)e−j2πuk/P (4)



Figure 6. Selected pedestrian images in INRIA human database.

3. Human Detection in Personal Album

We perform all of the experiments on the INRIA human
database [5], which is one of the most widely used database
for human detection in still images, consisting of thousands
of cropped human images in urban scenes. This database
contains 2416 human annotations and 1218 non-human im-
ages for the training stage, and similar number of samples
for testing. Moreover, there are a variety of variations in
human pose, clothing, lighting, clutters and occlusions, thus
challenging and suitable as a benchmark for comparison be-
tween different algorithms and features. Selected images
are shown in Figure 6.

Given an image window R (typically of size 128 × 64
pixels) to be classified, we can extract a large number of
subwindows with varying size and position. Some early
work of human detection [5] only used subwindows with
fixed small size (8× 8), while later works ([20],[14] further
demonstrate that ensemble of variable-size subwindows can
greatly promote detection efficiency. In our experiments,
we adopt the variable-size strategy, and sampling subwin-
dows in a similar way to [14]: the minimum subwindows
units are sampled with 1/K (typically we set K = 10) of
the width and height of its parent detecting window, and this
size is incremented in a step of 1/K either horizontally or
vertically, or both. Finally we get the set of all valid sub-
windows Wsubwin = {ri}. For K = 10, the cardinality of
Wsubwin is 3025. Larger K gives more subwindows while
complicates the training of the detector.

4. Evaluations

In this section we present three experiments to evaluate
the effectiveness and efficiency of out proposed features,
and provide a comprehensive comparison with other popu-
lar features. It should be noted that implementing human
detecting algorithm is somewhat tricky. Even within the
same learning framework such as AdaBoost, small changes
for some parameters may bring about twice better or worse
results (see [5] for some examples). Thus experiments for
comparing different features should avoid as many ad hoc
optimizing tricks as possible. To rule out various unrelated
factors and highlight the distinctiveness of feature itself, we
carefully design the last two experiments. Especially, the
learning algorithms there are chosen according to following
criterions:

• it should be state-of-the-art.

• suitable for a variety of feature types.

• fewer parameters to be tuned are preferred.

In the first experiment, we compare S-LBP with two
other local descriptors: COV [14] and HOG [20], both of
which are known to be state-of-the-art and fast to compute.
We do not include Shapelet [12] and tree-based approach
[16], since these two mainly focus on the learning part and
impractical due to their low speed. In practice we adopt
cascade-of-rejectgors+logitBoost [8] as our basic learning
algorithm and use a L2 normalized 8×8 histogram descrip-
tor. Detection error tradeoff (DET) for all descriptors are
plotted in Figure 7. The horizontal coordinate corresponds
to FPPW (false positive per window), and vertical coordi-
nate denotes miss rate. Obviously low miss rate together
with low FPPW is favorable, in practice we usually seek a
good tradeoff between the two. According to our experi-
ments, S-LBP have higher accuracy yet lower speed com-
pared to HOG, while higher speed and comparable accuracy
compared to the vectorized COV descriptor. Moreover, for
S-LBP, the best sub-window in the first cascade stage is able
to reject more than 74% negative samples while keeping 0%
miss rate, which is the best reported result in related litera-
tures. The first three cascade levels reject about 90% nega-
tive samples, requiring evaluation of about 1.9 LBP descrip-
tors on average. This number for COV is about 2.1, while
HOG takes exactly 4.
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Figure 7. Detection error tradeoff (DET) curves for different de-
scriptors on a log-log scale.

In the second experiment, we inspect the classification
score for each individual subwindow for HOG, COV and
our LBP-based descriptors. This process can be described
as follows: we sample thousands of subwindows ri, i =
1...M from the whole set Wsubwin. For each ri, descrip-
tive vectors f t

i can be calculated (the index t denotes dif-
ferent feature type, and we assume f t have a length dt).
Then discriminant analysis is performed in Euclidean space



Rdt to find the optimal projective direction. An important
fact should be pointed out that herein positive and nega-
tive samples aren’t in same status. Detecting humans in
still images is fundamentally a rare-event detection prob-
lem. Each positive image contains only one human patch,
while from a non-human image we can extract thousands
of negative small patches. On the one hand, sample num-
bers of human/non-human patches are tremendously unbal-
anced. On the other hand, penalty for misclassifying a pos-
itive sample is supposed to be different from that for a neg-
ative one. In a word, special techniques should be devel-
oped to address this intrinsic asymmetry lying in the data.
In practice we adopted the recently proposed LAC (linear
asymmetric classifier) [17] to learn a linear separating hy-
perplane.

Denote data as Xi = {xi
k, k ∈ Ii} where i = 1 for

positive samples, i = 2 for the negative; I1, I2 are index
sets. Let ni be the total sample number for class i. Then
sample means for each class can be calculated as below:

mi =
1
ni

∑

k∈Ii

xk (5)

And the covariance matrices are computed as:

Σi =
1

ni − 1

∑

k∈Ii

(xk −mi)(xk −mi)T (6)

The LAC method extracts optimal discriminant direction
w∗ by maximizing the following objective:

w∗ = argw max J(w) =
wT (m1 −m2)(m1 −m2)T w

wT Σ1w
(7)

This objective functional J(w) is similar yet subtly dif-
fers from Fisher discriminant analysis (FDA) [7], and actu-
ally in a form of generalized Rayleigh quotient, whose op-
timal solution can be elegantly obtained via eigenvalue de-
composition [7], i.e. the optimal direction w∗ = Σ−1

1 (m1−
m2). In our experiments we find LAC is more suitable for
the asymmetric detection problem compared to other tradi-
tional linear discriminant approaches including FDA. More
details about LAC can refer to [17].

After finding w∗, all feature vectors are then projected
onto it, i.e. x′k = (xk)T w∗. Then we can obtain probabil-
ity distribution over the range of [min(x′k),max(x′k)]. In
practice, we build histograms with Nh = 50 bins for both
classes, and use hj

+, hj
− to represent the value of bin j for

positive and negative distributions respectively.
Now we can measure the distinctiveness of each feature

type based on these histograms. It is known that the classi-
fication power of a subwindow varies with its size and po-
sition. For each subwindow ri with feature type t, we adopt
Z value [13] to reflect the separability of the projected data:

Zt(ri) = 2
Nh∑

j=1

√
hj

+hj
− (8)

In fact, Z ∈ [0, 1] is the Bhattacharyya distance between
the postive/negative distributions. In ensemble learning al-
gorithms such as AdaBoost [8], Z value is widely used to
estimate how discriminative a weak classifier is. A small Z
value indicates ”good” data distribution for the classifica-
tion task. We randomly sample thousands of subwindows
from Wsubwin, record their Z values. This process runs for
several times and finally we get averaged probabilistic dis-
tribution of Z values for each kind of feature. See Figure 9
for the results. It is shown that S-LBP has its peak most near
to 0, which demonstrates its superiority over other features.
Also, we draw the subwindow with lowest Z value selected
by each kind of feature in Figure 8.

S-LBP

Z-value:

0.3109

COVHOG

Z-value:

0.5549

Z-value:

0.4497

Figure 8. Best subwindow with smallest Z value.

In the third experiment, we aim to compare the discrim-
inative ability for ensemble of several distinct subwindows,
which is a next step for experiment two. In previous human
detection systems, typically the final classifier is made up
of a large number of small weak classifiers. For example, in
[20] and [14], the trained classifier consists of hundreds of
boosted local classifiers. While in the shapelet method [12],
the authors use more than 20,000 weak decision stumps.
For comparison between several descriptors, it is a serious
issue to optimally select the learning parameters such as the
minimum detection rate in each cascade stage, which usu-
ally depend on feature type and need be empirically deter-
mined (see [3]).

As a results, we adopt a scheme which we called ”Ran-
domEnsemble” to learn a naive detector, which works as
follows: given a target detecting window R, first we ran-
domly sample as many as nw (set to be 150 in practice)
subwindows {rj , j = 1 . . . nw} from Wsubwin, compute
feature vectors over individual subwindow to get {f t

j , j =
1 . . . nw} with dimension dt for feature type t, and con-
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Figure 9. Left: Z value distributions for various descriptors. Right: Z value distribution for different histogram binning of S-LBP.

catenate all these linear vectors into a dt × nw dimen-
sional ”supervector” according to fixed order, i.e. F t =<
f t
1, f

t
2, . . . , f

t
nw

>. After that, standard SVM is utilized to
learn a separating vector w and bias b as linear classifier.
The label y for the testing image window R is determined
by:

y = Sgn(F t(R)T · w + b), (9)

where Sgn(x) = 1 if x >= 0, otherwise -1. In implemen-
tation we adopt SVM-Torch [4] as the base learner. More-
over, it is possible to incorporate the kernel trick by defining
a kernel within two ”supervector”. For example, the RBF
kernel can be defined as:

K(F t(R1), F t(R2)) = exp(−‖ F t(R1)− F t(R2) ‖2
2σ2

)
(10)
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Figure 10. DET curves for human detectors trained through
RandomEnsemble. Here the S-LBP use L2-norm 8 × 8 his-
togram feature, while F-LBP only keeps 62.5% low frequency co-
efficients. This figure is best viewed in color.

In Figure 10 we plot the DET curves for several afore-
mentioned descriptors with linear kernel. The performance

is certainly inferior to boosting-based method, since sub-
windows here are randomly selected rather than optimally
selected along the objective functional’s gradient. Instead,
weights for selected subwindows will be optimally adjusted
by SVM. Also we do not re-train on the ”hardest” sam-
ples (i.e. the ones misclassified by initial detector) to get
a much stronger detector as in [5]. However, through ”Ran-
domEnsemble” and all other experimental settings, we care-
fully rule out unrelated factors while highlighting the im-
pact of choosing different region descriptors, thus obtaining
much more reasonable comparisons.

5. Conclusion and Future Work

We have attacked the human detection problem by utiliz-
ing LBP as region descriptors. Extensive experiments show
that local patterns outperform other gradient-based features,
owing to the fact that these binarized patterns capture more
about the local structures in image manifold. Incorporating
these local features with global statistics is a potential future
direction.
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