
GPU-Accelerated Visual Hull Rendering

 Bingfeng Zhou*, Donghai Xie**
Institute of Computer Science and Technology

Peking University
Beijing, P.R.China
*cczbf@pku,edu,cn

**xiedonghai@icst.pku.edu.cn

Abstract - In this paper, a method using programmable GPU to accelerate visual hull rendering is
described. The method creates the geometry model of a static object. Then to explore the parallelism
of the GPU, the triangle mesh model of the visual hull is fed into GPU for coordinate transformation
and visual hull texture sampling. Using this method, real-time user interaction of the image-based
virtual object is achieved.

Keywords: Image-based Rendering, Visual Hull, Hardware Acceleration, GPU, Cg

1 Introduction

Visual hull [4] is an efficient technique for image
based rendering. Its idea can be traced back to a kind
of object description method called shape-from-
silhouette ([1],[2]). The visual hull method takes
several photographs containing the image and
silhouette of the target object from different view
positions as input. The images are then used to
construct the convex hull of the target object.
Theoretically, the visual hull method calculates the
intersection of the viewing cone defined by the
viewing position and silhouette of each photograph
and uses this intersection as the visual hull of the
target object. By sampling the corresponding source-
image pixels of each surface point on the hull, the
color of the surface point is decided.

When implement the visual hull algorithm, the
visual hull is obtained by using one dimensional CSG
algorithm, that is, when rendering each pixel of a
particular scenery image, the 3D surface point of the
visual hull is decided by applying an 1D CSG
operation of the parts of the viewing line mapped from
each silhouettes. The complexity of this algorithm
depends on the number of the source images and
usually too slow to achieve the real time rendering,. In
its original implementation, the real time rendering is
achieved using parallel calculation among multiple
interconnected computers [4].

Form the algorithm point of the view, the original
form of visual hull algorithm [4] is parallelizable
because the 1D CSG operations as well as the
following texture sampling steps for each rendering
pixel are independent of each other. This parallelism

makes it possible for the algorithm to be implemented
on a given hardware equipped with a kind of the
parallel calculation mechanism, and the modern
programmable GPU graphics hardware is just a
suitable facility. GPU (Graphics Processing Unit) is a
kind of specially designed hardware for fast rendering
of 3D graphics. Its fundamental rendering mechanism
is to perform the rendering calculation in parallel
because most of the image generations in computer
graphics can be parallelized on pixel basis. Besides its
parallel mechanism, anther outstanding feature of
modern GPUs is its programmability and the
corresponding programming environments are also
available now [3].

In this paper, we describe a method to render the
image based visual hull using programmable GPUs.
The target of this method is to achieve the real-time
interaction of the virtual object generated using image
based visual hull.

There are already some works on rendering
visual hulls using GPUs [5]. But most of them only
use the texture mapping functions of the GPUs
directly and leaves the visual hull calculation to the
separate networked computers to explore the
parallelism on an image basis, which increases the
complexity of the system.

In our work, instead of using multiple networked
computers to reconstruct the visual hull, we employed
a Marching Cube [6] algorithm to reconstruct the
visual hull, and then using this pre-calculated visual
hull model to render the visual hull image in a view-
dependent way, which can fully utilize the parallelism
of the GPU hardware. The method keeps the

advantage of “optimal texturing from multiple
silhouette images” and can achieve real time
interaction of static virtual objects.

The remaining of this paper will be organized as
following: Section 2 will describe the overview of our
rendering system. Section 3 will describe our method
of visual hull reconstruction. Section 4 describes our
method of using GPU to accelerate visual hull
rendering. Section 5 is the experiment and results.

2 System overview
The organization of our rendering system is

shown in Figure 1. In our system, the input is a set of
images taken using an off the shelf digital camera. For
each input image, the camera is automatically
calibrated by the system for its position, view
direction and internal parameters using a specially
designed calibration chart (Figure 2). When the image
is fed in to the system, the background is blue-
screened manually, based on which the silhouette is
extracted automatically and is represented in the form
of polygon.

In our system, we chose to reconstruct triangle-
meshed visual hull prior to the real-time rendering of
the novel images. This is because that it is a most
efficient way to for the GPUs to render the triangle-
meshed model and the target of our system is to render
the static object.

After the visual hull reconstruction, the
reconstructed model is represented in the form of
triangle mesh; the triangle mesh is then fed into the
GPU for the visual rendering, which is exactly based
on the method given by Matusik et al [4]. Since this
algorithm is parallel-able and “optimized with respect
to the view”, we obtained a close-to-realism virtual
object rendering with a real-time user interaction.

3 Visuall hull reconstruction
3.1 Image-based visual hull and its

reconstruction
In the original form of image-based visual hull

rendering [1, 4], no visual hull exists explicitly in the
whole process. When rendering, the surface point of
the visual hull corresponding to the pixel of the
rendering plane is calculated using 1-D CSG operation.
Given the 3D coordinate of the surface point and the
camera parameters of each silhouette image, the point
can be easily mapped on to the pixels of each
silhouette images and the optimal rendering color
value can be chosen.

This original form of the method is quite suitable
for the real-time rendering of dynamic scene captured
with several video cameras. It can also be
implemented in a multi-computer context to achieve
real-time rendering. But with respect to the GPU
implementation, this algorithm can not be efficiently
implemented due to the limitations of current GPU
programmability.

The GPU is designed to rendering 3D geometry
models efficiently. So the most efficient form of the
data they can process is triangles. Given this nature of
GPU, we choose to generate the explicit model of
visual hull instead of calculating it in rendering time.

Silhouette nSilhouette 2Silhouette 1

Novel View image

Visual Hull Rescontruction

Reconstructed Visual
Hull (in triangle mesh)

Visual Hull rendering in GPU

... ...

Figure 1 System overview

Figure 2 Camera calibration pattern

If the visual hull is treated as the intersection of
viewing cones defined by the silhouettes, there are
many works available for the visual hull
reconstruction. In [7], viewing cones are constructed
and the visual hull is obtained using 3D boolean
operation. The work described in [2] subdivides the
space in to voxels and obtain the result by mapping
these voxels into each silhouettes and collecting those
voxels falling inside all the silhouettes. In our system,
we choose the “Marching-Cube” method described in
[6] to obtain the explicit geometry model, that is, the
triangle mesh, of the visual hull.

When reconstructing the geometry model using
Marching-Cube method, the 3D space occupied by the
target object is subdivided into small regular cubes.
Each cube is then intersected with the surface
definition of any target geometry (in our situation, the
visual hull) and the obtained intersection surface
constitutes the surface of the geometry. To obtain a
triangle mesh of the visual hull, the cube is further
divided into 6 tetrahedrons [8], and thus the obtained
the surface model is a triangle mesh.

In the visual hull context, the visual is defined
implicitly. To obtain the intersection of each edge of
the cube, we used a binary subdivision scheme [8]. In
this process, the subdivided edge is mapped into the
each silhouette images to decide, in a similar way to

the one in [2], whether it falls inside the visual hull,
and we abandon those that fall complexly inside or
outside the visual hull. When the remaining edge is
shrunk small enough, it is considered as a point, and it
is exactly the intersection point wanted.

4 Hardware accelerated visual hull
rendering
Visual hull reconstruction is the first stage in our

rendering process. This stage is carried out in a off-
line way, which means, for each virtual object, the
stage is performed only once. For the remaining part
of the visual hull rendering, except the silhouette-
visibility test [4], we’ll put them into GPU to achieve
the real-time user interaction (Figure 3).

4.1 Silhouette-visibility test
In the original form of the image-based visual

hull rendering [4], after the 3D coordinate of a surface
point is decided, the 3D coordinate is mapped into
each silhouette images to sample the corresponding
color values. Since silhouette images are taken around
the target object, a 3D point may not be seen from
every viewing position of the silhouette images. So a
visibility test of the 3D points with respect to a
silhouette image is necessary. This test is novel-view-
position-independent, so it can be done in an off-line
way.

For the similar reason, not every silhouette image
is valid for sampling for a given 3D surface point, and
so some silhouette images should be neglected for the
sampling, this is also done in the same stage as the
visibility test.

In our implementation, we employed the
rendering mechanism of the available graphics system
such as OpenGL to do the visibility test. By rendering
the z-buffer of the mesh from the viewing position of
a silhouette image and by comparing the z coordinate
of the 3D point in the viewing coordinate system with
the corresponding z value of the z-buffer, the visibility
of that 3D point can be easily decided. We perform the
visibility test on a triangle basis. The visibility of a
triangle with respect to each silhouette image is
attached to the triangle data. As for the valid silhouette
image selected, only two optimal images are chosen
(Figure 3).

silhouettes

+ Texture
+ Silhouette
+ Camera Param.

1.Visual Hull Reconstruction
<<CPU>>

**

input

Visual Hull Mesh

output

Triangle
+ Nodes*1 *

2.Visibility Test
<<CPU>>

input

input

output

Triangle-Sil. visibility
+ visibility for S[i]

1

1

1

1

Output

3.Vertex to Txtr. Coord.
<<GPU:V.P.>>

input
input as a single texture to GPU

input

Data to Fragmant Program
+ 2 optimal Silhouettes
+ Maped coordinates into the two Silhouettes
+ Blending weigth

<<Data to GPU F.P>>

output

4.Blending
<<GPU F.P.>>

input
Novel Image

Pixel writng

1

Figure 3 Procedures of our visual hull
rendering

4.2 Coordinate transformation in GPU
vertex program

The remaining calculation of the visual hull
rendering for a novel viewing point is performed per
pixel, and so they can be performed by GPU in
parallel. According to the programming architecture of
the GPUs [3], these calculations are divided into two
steps. The first is to perform the coordinate transform
from vertex coordinate to the texture coordinates for
silhouette image sampling. This step is performed in
the vertex program of the GPU. The second part of the
calculation is the image blending between the two
optimal silhouette images, which will be described in
the next section.

When implementing this step in vertex program,
considering the programming limitation, the multiple
silhouette images are programmed in a single texture
to be fed in to the vertex program, the camera
parameters are send in to the vertex program as the
uniform parameter of Gg [3], visibilities are send into
the vertex program in the place of a spare geometry
data "normal".

4.3 Texture blending in GPU fragment
program

The result of the GPU vertex program includes
two texture coordinates indexing into the texture
buffer for the sampling of the two silhouette images.
The sampled color values are to be blended by a
weight calculated in the vertex program, the weight is
calculated using the following formula [5]:

=kW)arccos(/1 ddk

rr
•

and the blending is done by :

∑∑
==









=

N

k
k

N

k
kk WTWC

11
/*

where C is the blended color value to be send to the
output pixel; kd

r
is the viewing direction of the

silhouette k; d
r

is the view direction of the novel view;
Tk is the sampled color value from silhouette k; N is
total number of silhouettes take part in the blending, in
our situation, N=2.

5 Results
An rendering system is implemented accroding to the
descriptions in the previeous sections. Figure 4 is one
of its output. The visual hull is constructed using 23
silhouette images. When render for the real time user
interaction, only four images are are enough. In this
experiment, the frame rate of the real-time user
interaction is 50 fps.
References
[1] A.Laurentini, “The visual hull concept for
silhouette-based image understanding”, IEEE Trans.
Pattern Anal. Machine Intell., Vol.16, No. 2, pp. 150-
162, Feb. 1994.

[2] R.Szeliski, “Rapid octree construction from
image sequences”, CVGIP: Image Understanding,
Vol.58, No.1, pp. 23-32, July 1993.

[3] R. William, R. Mark, S. Glanville, K. Akeley, M.
J. Kilgard, “Cg: A System for Programming Graphics
Hardware in a C-like Language”, ACM Transactions
on Graphics, Vol. 22, No. 3, pp. 896-907 , July 2003

[4] W.Matusik, C.Buehler, R Raskar, S.Gortler, and
L.McMillan, ”Image-Based Visual Hulls”,
Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH 2000), pp. 369-374, July 2000

[5] M.Li, M.Magnor, and H-P.Seidel, “Hardware-
accelerated visual hull reconstruction and rendering”,
Proc. Graphics Interface 2003, pp. 65-71, 2003

[6] W.E.Lorensen , H.E.Cline, “Marching cubes: A
high resolution 3D surface construction algorithm”,
ACM SIGGRAPH Computer Graphics
(SIGGRAPH1987), Vol. 21 No. 4, p.163-169, July
1987

[7] S. K. Srivastava, “Octree generation from object
silhouettes in perspective views”, Computer Vision,
Graphics, and Image Processing, Vol. 49, No.1,
pp.68-84, Jan. 1990

Figure 4 Results (Pentium4 2.1G，512MB
RAM，GPU: NVIDIA GeForce FX 5900XT)

[8] J.Bloomenthal, “An Implicit Surface
Polygonizer”, Graphics gems IV, pp. 324 - 349, 1994.

