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Abstract. When detecting ridge-valley lines on 3D mesh model, esti-
mation of the curvature and curvature derivatives may often yields to
squiggly and noisy result, because the estimation is sensitive against
unwanted surface noises. We present two algorithms to obtain smooth
and noiseless ridge-valley lines. First, we apply an iterative procedure on
ridge and valley vertices and their previous and next neighbors on con-
nected feature lines, which leads to smooth lines. Secondly, we propose
an algorithm to distinguish noises from meaningful feature lines based
on graph theory model. Each separate feature line is considered as an
undirected weighted graph which is called as Feature Graph. We can
reasonably get rid of most noises and preserve meaningful feature lines
through optimizing the minimal spanning tree of each feature graph.

1 Introduction

Lines are powerful shape descriptors which can convey most information on
3D models for designer and artist. Feature lines can be remarkably efficient at
conveying shape and meaning while reducing visual clutter, especially in the
interactive design of entertainment and engineering system. Feature lines ex-
traction from discrete meshes has become an hot area of intense research in
recent decade [1] [2] [3] [4] [5]. In general, feature lines include Silhouette
Edges, Boundary Edges and Interior Feature Edges [6]. Boundary edges
only exist in non-closed surface meshes. Detection of boundary edges is simple.
we just detect edges contained in only one triangle on triangle model. The fast
extraction algorithms of silhouette edges have been developed and can achieve
good results. [1] [2] [3] [4].

Besides silhouette edges and boundary edges, interior feature edges indicate
the internal structure and details on mesh at a finer level. In our method, we
mainly deal with interior feature edges as view- and scale- independent ridge-
valley lines, which are curves on a surface along which the surface bends sharply.
However, it is easy to apply our algorithm to dealing with view-dependent feature
lines such as suggestive lines [7] [8].

There have been various existing interior feature edges detection algorithms
[9] [10] [11] [12] [7] [8]. All existing feature line extraction methods, however,
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treated the noises and meaningful feature lines of surface as the same role in
computing process, the algorithm we present can reasonably separate noises
from meaningful lines.

In our study, we first detect ridge and valley vertices via curvature and cur-
vature derivatives analysis, then connect those vertices to generate feature lines.
This lead to two problems as the left image of Figure 1 shows. One is squiggly
lines result, the other is noises produced because of the computational error of
curvature and curvature derivatives estimation. These two problems all come
from the curvature-related estimation.

We present two algorithms to resolve these two problems respectively. After
obtaining the ridge and valley vertices on mesh surface and connecting them, first
we apply an iterative procedure working on local previous and next neighbors
of a vertex on connected feature line. This iteration operation which is similar
to Laplacian smoothing will achieve smooth feature lines. Secondly, we visit all
ridge and valley vertices. Naturally, a separate feature line can be treated as an
undirected graph weighted by the length of edges. The extracted feature lines can
be viewed as a set of undirected weighted graphs. We call these graph Feature
Graphs in our paper. For each feature graphs, a root node is chosen by a special
condition, then the minimal spanning tree and the longest path of the tree is
computed. After optimizing the minimal spanning tree through weight of nodes
on graph, we can wipe out noises, and obtain meaningful feature lines as the
right image of Figure 1 shows.

The contribution of our paper focus on not only the smoothing procedure of
feature lines, but also providing a reasonable and extendable scheme on how
to divide noise from meaningful feature lines. In the remaining of this paper,
we will introduce previous work in Section 2. In Section 3, the ridge-valley lines
smoothing method will be given. Section 4 will describe the optimizing algorithm
used to wipe out noises.

2 Previous Work

Various feature detection algorithms have been proposed during the past sev-
eral years [9] [10] [11] [12] [7] [13] [8]. Earlier papers focus on extraction of
view-dependent silhouette edges [2] [3] [4], which separate the visible part from
invisible ones of mesh model, i.e. edges shared by front-facing and back-facing
polygons, and can be detected fast in real time [1].

However, much more finer details are indicated by interior feature edges. Most
of existing algorithms on extracting interior feature edges mainly focused on
global feature detection via curvature analysis. DeCarlo [7] define interior fea-
ture edges as view-dependent suggestive contour, which is extracted through
radial curvature [14] analysis. The authors improved their algorithm in [13] with
increasing of detecting speed. Sousa and Prusinkiewicz [8] present another au-
tomated algorithm to produce suggestive line drawing using graph theory, but
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Fig. 1. A feature lines smoothing and optimizing example of bunny model with 69k
triangles. The left image is the result before line smoothing and optimizing [10], noises
and squiggly lines can be seen. The right image is the result after optimizing, feature
lines are smoother and noiseless.

their results are not satisfied when the method is applied on some model, such as
the bunny model. Other authors define interior feature edges as view- and scale-
independent Ridge-Valley edges [9] [11], and extract feature lines via principle
curvature analysis. The benefit of using view- and scale-independent ridge-valley
lines is that they only need to be computed once, and are not necessary to be
recomputed each time the view point changed. In our study, we focus on ridge-
valley lines and mainly follow the definition in [10].

Ohtake [10] proposed simple and effective method for detecting ridge-valley
lines defined via first- and second-order curvature derivatives on meshes. The
high order surface derivative is achieved by combing multi-level implicit sur-
face fitting. The common drawbacks of these curvature based algorithms are re-
lated with the sensitiveness of both curvature and derivative estimations against
unwanted surface noise, and they do not make any different from noises and
meaningful feature lines.

Those approaches are based on global curvature analysis may yield to squig-
gly and noisy feature lines. [15] present a modification of Laplacian smoothing
algorithm to smooth feature lines, but their scheme works on the entire mesh
before tracing feature lines. The algorithm we present in Section 3 is also similar
with Laplacian smoothing [16], but works after detecting feature lines. Our algo-
rithm can pay more attention to the local property of extracted feature lines and
works well. Isenberg et al. [17] also present image-space algorithm to detect and
remove artifact such as zig-zag style. In their study, they use their own visibil-
ity determination algorithm not the traditional hardware z-buffer algorithm for
the conveniency of generating stroke. The artifact they mentioned in their paper
such as zig-zag lines is produced by their own visibility determination algorithm,
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not from the original model. They didn’t mention how to removal the noise like
short branches which comes from the original model and curvature estimation
error.

Some researchers on image processing focus on the interactive feature detec-
tion method. e.g. [18] proposed a method called geometric snakes which is an
extension of image snakes [19], [20] proposed an semi-automatic algorithm to
obtain smooth lines. But these interactive methods are not fit for automatic 3D
applications.

3 Achieving Smooth Feature Lines

In our study, we detect view- and scale- dependent ridge-valley lines as interior
feature edges. We estimate the curvature first using [21]. Mainly following the
definition in [10], we can get the result of feature lines as the left image in
Figure 2 shows.

After feature lines are detected, we apply an iterative procedure on ridge-
valley lines as follow to smooth the extracted feature lines. Our approach is
similar with laplacian smoothing which is inspired by normal based mesh filtering
[22], for each ridge vertex(or valley vertex)v, with its normal vector nv , we find
its two neighbors vprev and vnext from the feature line. If a vertex has only one
neighbor on the feature line(the start vertex or the end vertex of the line), or a
vertex has more than two neighbors on the feature line(the branch vertex), we
skip these vertices and don’t apply the iteration operation on these vertices.

If the vertex have exactly two neighbors on the line, then let the middle point
between vprev and vnext be vmiddle = (vprev + vnext)/2. The vector from v to
vmiddle is v′ = vmiddle − v. Define the difference of v on the line as

Δv = v′ − (v′ · nv)nv (1)

the iterative procedure will move v to a new position according to the difference
Δv. After each iteration step, the Δv should be updated with the new position of

Fig. 2. A feature lines smoothing example of bunny model with 69k triangles. The left
image is the result before line smoothing, squiggly lines exists. The right image is the
result after smoothing without squiggly lines with λ = 0.4 after 20 iterations.
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v, we use v0 to represent the original position of vertex v, and vn to represent
the new position of v after the nth iteration. the updated Δv after the nth
iteration is represented by Δv(n). The new position of the vertex v is calculated
by Eq.2

v(n) = v(n−1) + λΔv(n−1) (2)

where λ is a controlling parameter which satisfy 0 ≤ λ ≤ 1. After applied Eq.2
on ridge and valley vertex, the connected feature line can be more smooth as
the right image of Figure 2 shows. For all of our experiments, λ = 0.4 proves to
be a good choice, and the convergence can be achieved after 20 iteration times.

Compared with Laplacian smoothing scheme [15] working on the entire mesh,
the proposed smoothing algorithm concentrate more on the local property of
feature lines and is more direct and effective.

4 Feature Lines Optimizing

After being smoothed, the results still keep much noises and useless little branch
lines which interfere with our observation. The key challenge is to distinguish
these noises from meaningful feature lines.

For the feature lines extraction, each separate line can be denoted as Gi =<
Vi, Ei, Wi >, where Vi is the list of vertices, Ei is the list of edges satisfying
E ⊆ [V ]2, Wi is the weight function of Ei, in which wk ∈ Wi is weight of
ek ∈ Ei. we used the length of edge as weight in our study. Naturally, Gi is
an undirected weighted graph. We call Gi a Feature Graph. Furthermore, by
construction, a Feature Graph is also a connected graph. The extracted feature
lines can be represented by a set of Feature Graph G =< G0, G1, ..., Gm >, each
Gi ∈ G correspond a line segment. We develop denoising algorithm through
optimizing each Gi ∈ G.

For each Gi ∈ G, we computed the longest path P , with length L. Since
feature graph Gi is a connected graph, it certainly contains a spanning tree. We
build the Minimal Spanning Tree of Gi using the start vertex or the end vertex
of the longest path as the root of tree.
Computed the Longest Path: Follow the definition of path in graph theory
[23], a path is a non-empty graph P =< V, E > of the form

V = x0, x1, ..., xk, E = x0x1, x2x2, ..., xk−1xk

where the xi are all distinct. Here we refer the Longest Path as the path
Pj ⊆ Gi with the maximal sum of edge weight in P of all path in graph Gi,
mathematically, a path Pj is the longest path in the graph Gi if and only if∑

ek∈E(Pj),Pj⊆Gi
wk is the maximum, e.g.

max{
∑

ek∈E(P0)

wk,
∑

ek∈E(P1)

wk, ...,
∑

ek∈E(Pn)

wk}

Since we use the length of edge as weight, the Longest Path visually is
the longest line branch in a separate feature line. Figure 3 shows three different
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situations during computing, for each branch vertex t in a tree, the length from
the root to the vertex t is Ltroot , length of the two longest low level branch of
vertex t is Lt1 and Lt2 , then the longest path Ltmax crossing the vertex t is
max{Ltroot + Lt1 , Ltroot + Lt2 , Lt1 + Lt2}. The longest path of tree T should be
max{Lv0, Lv1, ..., Lvn}, (v0, v1, ..., vn ∈ V (T )).

Fig. 3. Example of three situation
of the longest path computation.
blue vertex is the root node of tree,
and red path is the longest path of
tree.

Fig. 4. Example of choosing root of Minimal
Spanning. The red points are roots of MSTs.
In the left image, we choose a vertex randomly
as the MST’s root to build the first MST T1.
Then we choose root as the start node(or the
end node) of the longest path in T1, rebuild the
MST T2 as the right image shows.

To compute the longest path, we randomly chose a vertex in graph as root,
then build the minimal spanning tree of the graph with PRIM [23] algorithm.
The left image of Figure 4 shows the random root choosing result. We compute
the longest path in the tree, which is also the longest path in graph Gi.

After finding out the longest path in the minimal spanning tree builded first
time, we choose the start vertex or the end vertex as root node to rebuild the
minimal spanning tree of graph Gi. Figure 4 shows the result of rebuilded min-
imal spanning tree.

Finishing rebuilding minimal spanning tree of each feature graph, we optimize
these trees to wipe out noises. Let Pi be the longest path of feature graph Gi,
the length Li of path Pi can be denoted as

Li =
∑

ek∈E(Pi)

wk

A global threshold θ and a local threshold ε are proposed to distinguish noises
from meaningful feature, which satisfies

min{L0, L1, ..., Lm} ≤ θ ≤ max{L0, L1, ..., Lm}

and
0 ≤ ε ≤ 1

We delete noises on extracted lines in the following two cases.
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CASE I: If the length Li of the longest path of feature graph Gi satisfies
Li < θ, the line corresponded feature graph Gi is considered as noise and not
rendered.

CASE II: Giving a feature graph G with its minimal spanning tree T . The
longest path P with length L has been found. For each node vi ∈ T , we compute
the longest path li among all pathes from the node to all leaf nodes. We check
each branch node vk ∈ P which has more than one child node. With preserving
branch belongs to the longest path of tree, if length of one of other branches
lbranch < ε ∗ L, the branch is considered as noises and deleted. On the contrast,
if length of one of other branches lbranch > ε ∗ L, we apply same checking step
on the subtree T ′ with the branch node being the root of T ′.

Implementation of CASE II: CASE I is easy to implement. Implemen-
tation of CASE II is a little difficult. We implement the CASE II through a
recursive function.

CHECK-ALL-BRANCH(GraphVertexIndex root)
for all vertex v in the longest path P

for all branch b of vertex V
if lv.b < lroot ∗ ε

CUT-BRANCH(v.b)
else

CHECK-ALL-BRANCH(v.b)
end if

end for
end for
Figure 5 shows the optimizing result of Figure 4 with global threshold θ = 16

and local threshold ε = 0.05. Meaningful result is obtained.

Fig. 5. Example of feature lines optimizing. θ = 16, ε = 0.05

Limitation: In our method, the parameters θ and ε in the optimization step
are set interactively now, it would be great if the program can compute these
two parameters automatically according to different triangle mesh models. For
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this purpose, more attention should be paid to the relationship between the two
parameters and the average of the length of the longest path on all feature graphs
of the entire model. This is also one of our future works.

5 Results and Discussion

Feature lines carry essential information about the geometry of a surface. But
existing method can not work perfectly because of the computational error dur-
ing curvature analysis on discrete mesh models, The unwanted noise sometimes
annoy the feature detection results very much. The methods we proposed in this
paper can not only smooth lines extracted through curvature analysis, but also
provide a reasonable scheme to distinguish noise from meaningful feature lines.

Our method works well on various models and can obtain high quality feature
line result. Figure 6 and 7 give two examples and the comparison with existing
method [13].

Although we mainly focus on the view-independent feature lines, it’s also easy
to apply our algorithm to deal with view-dependent lines such as suggestive
lines [7] [8]. But the computational time may increased. For view-independent
lines optimization, we need to build feature graphs only once. But for view-
dependent lines, different line-drawing result corresponds to different viewpoint.
Each time the viewpoint changed, the feature graphs need to be re-generated
and the computational time increases much. In our future work, more efficient
algorithm dealing with view-dependent lines should be developed.

Fig. 6. Example of feature lines optimizing. Left image is the optimizing result with
θ = 20, ε = 0.3. Middle image is rendered with ridge-valley lines and silhouette edges.
Right image is rendered using the algorithm [13].

Finally, greater precision on distinguish noise and feature line is required.
Sometimes, meaningful feature lines would be deleted as noises and noises may
be preserved as feature lines. In our future work, we will try to define noise not
only by length of line segments, but also by other properties of lines, such as line
curvatures.
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Fig. 7. Example of feature lines optimizing. Left image is the optimizing result with
ridge-valley lines and silhouette edges, θ = 0.2, ε = 0.05. Right image is rendered using
the algorithm [13].
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