
A 3D Model Feature-Line Extraction Method Using
Mesh Sharpening

Hao Jing and Bingfeng Zhou

Institute of Computer Science and Technology, Peking University

Abstract. The feature-line extraction of a 3D model is a key step in the model-
based Non-Photorealistic Rendering. In this paper, we introduce a new
algorithm that is based on a sharpening filter to extract the feature-lines of 3D
models. Experiments of feature-line rendering where our sharpening filter is in-
troduced as a pre-calculation step are shown to compare with the existing al-
gorithms ([1][2][3]). From these experiments it can be found that our rendering
results reserve more feature details and contain less noise. Furthermore, in our
algorithm, the computation time of rendering is also reduced.

1 Introduction

In model based Non-Photorealistic Rendering, the feature-line extraction of a 3D model
is an important step, which is the basis of many post processing and rendering technolo-
gies. A feature-line, by its definition, is part of the surface points of a 3D model, where
the important shape information of the model is delivered. The feature-line usually in-
cludes silhouettes, creases and boundaries [4]. In this paper, we describe a new way
based upon which a better rendering result can be achieved with more details and also
in real time (Figure 1 and 2). Compared with existing algorithms, the results obtained
by our algorithm can produce more feature details of a model and remove more noise.
In the meantime, the computation time of rendering can also be reduced.

Existing feature-line extraction algorithms can be divided into two categories. The
first category is addressed as traditional rendering algorithms. These algorithms extract
the feature-lines from a 3D model using the definition of silhouette directly and are well
described in earlier papers ([1] [2] [5] [6][7]). The algorithms which fall into the second
category ([2][3]) are addressed as curvature based algorithms. These algorithms extract
feature-lines not only based on the silhouette definition, but also by using the surface
curvature of the model. With these algorithms, the details can be shown better than
algorithms in the first category.

Since the algorithms from the first category extract the feature-line based on the sil-
houette definition only, the rendering result contains only the simplest edge information
as shown in Figure 3 and 4, where less detail can be seen. For instance, in Figure 3 and
4, the eyes of the model are missing.

Important features of a smooth surface include the curvature and the curvature deriv-
ative on each surface point along the view direction. These features are made use of by
many existing methods as described in [8], [9], [10], [11], [12] and [13]. Consider-
ing the limitations made by the current status of 3D data acquisition technology that

Z. Pan et al. (Eds.): Edutainment 2006, LNCS 3942, pp. 840–848, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A 3D Model Feature-Line Extraction Method Using Mesh Sharpening 841

Fig. 1. A model rendered using our algo-
rithm, with 5132 vertices and 10150 trian-
gles

Fig. 2. A model rendered using our al-
gorithm, with 2903 vertices and 5804
triangles and sharpening parameters
the same as Figure 8

the smooth surfaces in real world are usually simulated by triangle mesh in a model,
DeCarlo[2] suggested a rendering algorithm that takes not only the definition of sil-
houettes, but also those two features into account ([2]). Similar work is also suggested
by Sousa and Prusinkiewicz in their paper ([3]). These algorithms can achieve accept-
able results; however they do consume too much CPU time computing the directional
derivative along the view direction. Each time the viewpoint is changed, the directional
derivatives have to be recomputed.

The rendering algorithm we suggest in this paper is based on a sharpening filter. By
sharpening the model with a filter first and then extracting the feature-lines from the
sharpened model with existing algorithms[4], better results than those achieved in [2]
and [3] are obtained. Experiments show that our algorithm works well on all the models
we chose and obtains results such as those shown in Figure 1 and 2.

In the remaining of this paper, we will introduce related works; discuss the rendering
framework of our experiment as well as our sharpening filter, in Sections 2, 3 and 4
respectively. We will then go on to describe the experimental results achieved and the
analysis of our method in Sections 5 and 6. The last section will concludes this work
and summarizes what we have shown in this paper.

2 Related Works

The descriptions of the algorithms falling into category one (traditional rendering al-
gorithms) can be found in [1], [5], [6] and [7]. In the results of these algorithms, the
feature-lines in the convex part on the model can not be rendered perfectly, as shown in
Figure 9(a). Compared with the left image of Figure 7, which is the original image of the
model, Figure 9(a) does not contain enough detail to represent the feature information
of the original model (the left image of Figure 7).

Existing methods of rendering more lines to make the results contain more feature
information can be found in [2] and [3]. These methods make use of the curvature of the
surface of a model in their feature-line computing. DeCarlo et al. ([2]) suggest a method
named suggestive contour rendering that is based on radial curvature computing, and
can render more feature lines. However, because the radial curvature in each point is

842 H. Jing and B. Zhou

Fig. 3. Only the silhouette of elephant
3D model is rendered

Fig. 4. Only the silhouette of cow 3D
model is rendered

related to the view vector, each time the view vector changes, the radial curvature,
the gradient of curvature and the directional derivative of radial curvature along view
vector must all be recomputed. Thus, when rendering a model with too many vertices,
the rendering efficiency of this algorithm decreases rapidly. Furthermore, the result of
this method contains noise that is not satisfactory.

Inspired by DeCarlo’s work, where there is a pre-process step using a smoothing fil-
ter algorithm, we introduced in our work a sharpening filter algorithm as a pre-process
step that can improve the results of the existing algorithms significantly, producing re-
sults that are even better than DeCarlo’s.

3 Rendering Framework

The rendering procedure where our sharpening filter takes effect mainly follows the
framework of suggestive contour rendering [2]. The suggestive contour rendering in-
cludes three steps, that is: pre-processing, silhouette rendering and suggestive contour
rendering. However our procedure only includes two steps, that is, pre-processing and
feature-line rendering. DeCarlo et al. uses a Gaussian smoothing algorithm in pre-
processing step whereas our work uses a sharpening filter. Our sharpening filter equa-
tion takes a similar form as Gaussian smoothing equation, but the purpose is completely
opposite. After the pre-processing carried out by the sharpening filter, the convex part
on the model is treated as the feature-line and is rendered using the surface property in-
cluding silhouette and creases ([1][4]). The computation of curvature therefore becomes
not necessary and can thus be removed.

In the following we shall describe the first two steps of the procedure of sugges-
tive contour rendering, and in section 4, we will describe our modification to the pre-
processing step which makes it become a sharpening operation. The two steps to be
described in the next sections are Gaussian smoothing and silhouette extraction.

3.1 Gaussian Smoothing

In the framework of suggestive contour rendering, the Gaussian smoothing is employed
as a pre-processing step, where a surface on a model is defined as a pair of lists in
Eq. (1).

S = {V, F} (1)

A 3D Model Feature-Line Extraction Method Using Mesh Sharpening 843

In Eq.(1), V is a list of vertices, V = {vi|1 ≤ i ≤ n} where vi ∈ R3 is the coordinate
vector of the position of the i-th vertex, n is the number of vertices contained in the
model. F is the set of faces constituting the surface of the model, that is, F = {fk|1 ≤
k ≤ m}, where fk is a sequence of non-repeated vertex indices, m is the number of
faces contained in the model. So for a triangle mesh model, each fk contains three
vertex indices. In the remaining of this paper, triangle models will be referred to as
surface models. So for a given node vi in a triangle mesh, a node vj (i �= j) is a
neighbor of vi if and only if they are connected by an edge. In the following, we denote
Bi as the set of vertices that are neighbors of vertex vi. Given the above definition, the
Gaussian smoothing for each model vertex vi is given by Eq.(2) and (3).

∆vi =
∑

vj∈Bi

wij(vj − vi) (2)

v,
i = vi + λ∆vi (3)

where v,
i is the new position of vertex vi after smoothing. wij is the average weight that

satisfies
∑

vj∈Bi
wij = 1 and λ is the scale factor satisfying 0 < λ < 1. In this frame-

work, the Gaussian smoothing is an iteration procedure. It is performed repeatedly until
the necessary smoothing effect is achieved [14].

3.2 Silhouette Rendering

A silhouettes, by its nature, is the boundary on the surface of a model which separates
the visible part from invisible pieces of the surface of the model, as Figure 5 shows.

Defining the silhouettes mathematically, assuming the surface is smooth, we can
say that silhouette points are where the dot product of view vector and normal vector
equals zero, which is illustrated in Figure 6.

Silhouettes are extracted in the second step of the rendering framework. When im-
plementing this step of the framework, in addition to extracting silhouettes, we also con-
sider the two kinds of triangle edges that must be drawn when rendering. The two kinds
of edges that are addressed in our paper are boundary and crease edges. The boundary
only exists in non-closed surface meshes; they are the edges that are contained in only
one triangle. A crease is an edge where the triangles are connected creating a dihedral
angle that is less than 90◦. In the rest of this paper, without ambiguity, we shall refer to
the above three kinds of drawings all as feature-lines.

Fig. 5. Silhouette defined on polygon mesh Fig. 6. Silhouette defined on a smooth sur-
face

844 H. Jing and B. Zhou

4 A Sharpening Filter for a 3D Model

In our method, the sharpening filter is a pre-processing procedure to a model. Its pur-
pose is to amplify the convex nature of a surface model (mesh sharpening) so that the
amplified nature is much more sensitive to the feature-line extracting step. After sharp-
ening, we can render the feature-lines with less computation and to a lesser extend of
visible noise which can be seen in other existing algorithms.

For each vertex vi on the model, we calculate its difference with its neighbors ∆vi

as defined in Eq.(2)(the weights wij here are of the same value). Instead of using Eq.(3),
we use following equation to calculate the new position of vertex vi to achieve the
sharpening effect on the model:

v,
i = vi + (µ − λ)p(∆vi) − µλ∆vi (4)

where, if v = (x, y, z), then

p(v) = (
√

|x|,
√

|y|,
√

|z|) (5)

denotes a vector in R3 whose component is the square root of the absolute value of each
component of the vector v respectively. In Eq.(4), µ, λ are the scale factors which satisfy
0 < λ < µ < 1 , and µλ is much larger than µ−λ (which means µ and λ are very close).
Given this precondition, it means that this equation function is completely opposite
to the one in Gaussian smoothing [14], and thus is a sharpening filter. The operation
can run iteratively. The number of iterations is determined by the actual sharpening
effect.

A result of this sharpening filter can be found in Figure 1 and 2 with µ = 0.24,
λ = 0.23. More results and comparisons will be given in the following section. With-
out using the suggestive contour calculation, our algorithm can not only produce more
detailed line drawings from the model, but can also reduce large portions of the com-
putation caused by suggestive contour rendering. From Eq.(4), supposing the number
of vertices is n, the average number of neighbors in a given mesh for each vertices
is k, then for each sharpening operation, the computation estimate is k·o(n), which is
approximately linear with the number of vertices on the model.

5 Implementation and Results

We implemented a rendering system based on the framework described in sections 3
and 4. We performed feature-lines extraction experiments with several 3D models using
our algorithm and compared the results with the existing algorithms ([1], [2]). The
models are chosen so that they are typical for different types of 3D models, thus the
robustness of our algorithm could then be tested. The results and comparison can be
found in Figures 8 to 12. From the comparison, it can be found that the results obtained
by our algorithm contain much more feature details and eliminate the meaningless line
drawings generated by using the existing algorithms (Figure 8(a), 8(b), 9(a), 9(b), 10(a),
10(b), 11(a), 11(b), 12(a), 12(b)). As can be seen, our drawings appear much more vivid
(Figure 8(c), 9(c), 10(c), 11(c), 12(c)).

A 3D Model Feature-Line Extraction Method Using Mesh Sharpening 845

Table 1. Parameters used in the experiments

Figures µ λ N

Fugure 8 0.24 0.23 6
Fugure 9 0.24 0.23 4
Fugure 10 0.53 0.52 1
Fugure 11 0.34 0.33 3
Fugure 12 0.24 0.23 5

The experiment environment we used is a personal computer with Pentium IV 2.4G
CPU and a 64M NVIDIA GForce4 MX440 display card, the rendering results can be
browsed as a 3D scene in real time .

The scale factor µ, λ and the number of sharpening iteration N for each experiment
result can be found in Table 1. The iteration number N was decided by the visual
inspection during the experiment. The µ, λ are decided by experience. Apparently and
naturally, µ, λ are negatively related to N .

6 Analysis

From the results given in the previous section, rendering with our sharpening filter can
achieve better results. The main idea of our method is to modify the Gaussian smooth
filter [14] so that it functions as a sharpening filter instead. Given this target, the sharp-
ening filter should be written as following:

v,
i = vi − µλ∆vi (6)

In our experiment, this filter may cause, just like the shrinkage effect in Gaussian
smooth filter [14], an over-sharpening effect which can cause a messy result (middle
image in Figure 7). To minimize this effect, we add a third term as described in Eq.(7)
which can reduce this effect(right image in Figure 7).

(µ − λ)p(∆vi) (7)

Fig. 7. The left image is the original ”Beethoven” model with 2655 vertices and 5030 triangles,
the middle image is over-sharpening resulted from the filter defined by Eq.6. Right image is result
in which over-sharpening is reduced using the filter defined by Eq.4. The parameters used are the
same as those used in Figure 9.

846 H. Jing and B. Zhou

(a) (b)
(a) The result with the silhouette ren-
dered only.
(b) The result with the silhouette and
suggestive contour rendered.
(c) The result with the silhouette,
boundary and crease rendered after
sharpening (our method).

(c)

Fig. 8. Same model as Figure 2

(a) (b) (c)

Fig. 9. Same model as Figure 7 with 2655 vertices and 5030 triangles. (a) The result with the
silhouette rendered only. (b) The result with the silhouette and suggestive contour rendered. (c)
The result with the silhouette, boundary and crease rendered after sharpening (our method).

The reason it works, we believe, is that it acts as a perturbation operator over the
sharpening filter vi − µλ∆vi. The absolution operation in Eq.7 (Eq.5) makes the di-
rection of the perturbation vector (µ − λ)p(∆vi) stay within the (+1,+1,+1) octant.
When the changed direction is not the same as the direction of −µλ∆vi, it perturbs
the growing of the sharp edge. Moreover, the square root operation further changes the
direction of this vector. The shortcoming of the including of square root operation in
our formula is that it makes the sharpening filter scaling-dependent. How to overcome
this shortcoming is one of our future works. One of our idea is that we can remove the
square root operation from the filter, our preliminary experiment shows that this can
produce the similar results.

A 3D Model Feature-Line Extraction Method Using Mesh Sharpening 847

(a) (b) (c)

Fig. 10. A model with 3618 vertices and 7124 triangles. (a) The result with the silhouette rendered
only. (b) The result with the silhouette and suggestive contour rendered. (c) The result with the
silhouette, boundary and crease rendered after sharpening (our method).

(a) (b) (c)

Fig. 11. A model with 1760 vertices and 3516 triangles. (a) The result with the silhouette rendered
only. (b) The result with the silhouette and suggestive contour rendered. (c) The result with the
silhouette, boundary and crease rendered after sharpening (our method).

(a) (b) (c)

Fig. 12. A model with 689 vertices and 1355 triangles. (a) The result with the silhouette rendered
only. (b) The result with the silhouette and suggestive contour rendered. (c) The result with the
silhouette, boundary and crease rendered after sharpening (our method).

848 H. Jing and B. Zhou

In our experiment, the choosing of µ and λ must satisfy that µ is larger than λ in the
condition that µ and λ are very close. This means µλ is much larger than µ−λ, and this
makes the term µ − λ in Eq.(7) works as a control of the above perturbation amount so
that these amounts are very small, and thus keeps our result ideal.

7 Conclusions

In this paper, we suggested a feature-line rendering algorithm based on a sharpen-
ing filter. Using the sharpening filter to pre-process the model, we can perform non-
photorealistic rendering of a 3D model not only with more feature details but also
with less meaningless drawings than existing algorithms. Compared with existing al-
gorithms, because of the removal of curvature estimation, the computation efficiency is
also increased.

Acknowledgements. The authors would like to thank Doug DeCarlo of the department
of Computer Science & Center for Cognitive Science, Rutgers University , for his offer-
ing of the suggestive contour source code which makes the comparison results for this
paper feasible. Authors would also like to thank the Department of Computer Science
of Duke University that publicized the 3D models that are used in our experiment.

References

1. Hertzmann, A., Zorin, D.: Illustrating smooth surface. In: Proceedings of SIGGRAPH 2000,
ACM (2000)

2. DeCarlo, D., Finkelstein, A., Rusinkicwicz, S., Santella, A.: Suggestive contours for con-
veying shape. ACM Transactions on Graphics 22(3(July)) (2003) 848–855

3. Sousa, M.C., Prusinkiewicz, P.: A few good lines: Suggestive drawing of 3d models. Com-
puter Graphics Forum 22(3) (2003) 381–390

4. Gooch, B., Gooch, A.: Non-photorealistic Rendering. A K Peters, Ltd. (2001)
5. Raskar, R., Cohen, M.: Image precision silhouette edges. In: Symposium on Interactive 3D

Graphics 1999, ACM (1999)
6. Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D.: Real-time nonphotorealistic

rendering. In: Proceedings of SIGGRAPH 1997, ACM (1997)
7. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C.: Wysiwyg npr: Drawing

strokes directly on 3d models. In: Proceedings of SIGGRAPH 2002, ACM (2002)
8. Decarmo, M.P.: Differential Geometry of Curves and Surface. Cambridge Univ. Press (1976)
9. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation.

In: Proc. 5th International Conference on Computer Vision(ICCV-95). (1995)
10. Hameri, E., Shimshoni, I.: Estimating the principal curvature and the darboux frame from

real 3d range data. In: Proc. International Symposium on 3D Data Processing Visualization
and Transmission. (2002) 258–267

11. Neumann, L., Csebfalvi, B., Konig, A., Groller, E.: Gradient estimation in volume data using
4d linear regression. Computer Graphics Forum 19(3) (2000) 351–357

12. Isenberg, T., Halper, N., Strothotte, T.: Stylizing silhouettes at interactive rates: from silhou-
ette edges to silhouette strokes. Computer Graphics Forum 21(3) (2002) 249–258

13. Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease
detection and curvature estimation on large, noisy meshes. Graphical Models 64(3-4) (2002)
199–229

14. Taubin, G.: Curve and surface smoothing without shrinkage. In: ICCV ’95, IEEE (1995)

	Introduction
	Related Works
	Rendering Framework
	Gaussian Smoothing
	Silhouette Rendering

	A Sharpening Filter for a 3D Model
	Implementation and Results
	Analysis
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

