Removing Highlight Spots in Visual Hull Rendering

Jie Feng, Liang Chen and Bingfeng Zhou

Institute of Computer Science & Technology, Peking University, Beijing, China

Abstract

Highlight spots could often cause artifacts in image-based
visual hull (IBVH) rendering. In this paper, we propose a method
that can remove highlight spots from reference images by utilizing
the features of visual hull. First, we find the counterparts of a
highlight sub-image in other images, with the aid of the
correspondence between reference images in visual hull rendering.
Then the illumination and color detail of the pixels in the sub-
image could be retrieved from their corresponding pixels by color
blending. Thus, highlight spots are removed seamlessly without
affecting other regions of the scene. Using this improved rendering
method, we can obtain more realistic and precise result, and re-
lighting of the visual hull also becomes possible.

Introduction

Visual hull is an efficient technique for image-based
rendering. Its main idea comes from 3D reconstruction methods of
“Shape-from-Silhouette”. It takes a group of photos as input, and
produces a convex hull of the target object. Same as other image-
based methods, visual hull also suffers from the highlight spots on
the images, because they could often cause undesired artifacts in
rendering, especially when the illumination in the virtual
environment is changed.

In literatures, some image editing methods have been
proposed to remove highlight spots from photos. Some of them
need more than one photo at a single position to complete this task.
For instance, the method of Agrawal et al [1] requires a pair of
flash and ambient images, taken at the same position, and reduces
highlights by comparing their image gradients. This kind of
method is not practical in visual hull rendering, because it will
largely increase the difficulty of acquiring and storing source
images.

Some other methods could work on a single image, such as [2]
and [3]. The former introduces illumination-based constrains into
image inpainting, and the latter changes local illumination by
solving Poisson equations. However, they only report good results
when highlight spots lie in areas with simple or uniformly textured
background. On another aspect, single-image-based methods
cannot guarantee the consistency of corresponding areas in
different source images, which is very important in visual hull
rendering.

In fact, visual hull method itself provides much convenience
for highlight removal. The source images, also called reference
images, of a visual hull often have much overlaps. These overlaps
will offer sufficient information to remove highlights. That is
because the counterpart of a highlighted area in another image is
often out of highlight, due to the relative movement of the object
and the light.

Utilizing the calibration information of the cameras, the
correspondence of pixels in different images could be found during

the constructing of the visual hull. Thus, highlighted areas could
be resampled from other reference images, and a new reference
image without highlight spots could be generated by certain pixel
blending strategy. With these new images, we could obtain more
realistic and precise rendering result, and re-lighting of the visual
hull is also possible.

In this paper, we employ an Image-based Visual Hull (IBVH)
rendering method [4], which is described in the second section.
The approach to interactively removing highlight spots in IBVH
rendering is detailed in the third section, and the experiment
results follow in the last.

Visual Hull Rendering Methods

The research on visual hull reconstruction dates back to 1970s
[5]. Its main idea comes from “Shape-from-Silhouette”. A
reference image is separated into foreground and background. The
foreground mask, i.e. silhouette, along with the calibration
information of the camera, defines a back-projected cone in 3D
space that contains the target object. Thus, the intersection of all
silhouette cones forms a convex hull, which is the visual hull of
the object.

There are mainly two sorts of visual hull construction
methods: voxel-based and boundary-based methods. [6]

Voxel-based methods [7, 8] usually start from a working
volume, which contains the target object and is quantized into
voxels. The voxels are one by one put through tests: those lie
inside all silhouette cones are preserved; the others are cleared.
Therefore, the remaining voxels form the visual hull of the object.
These methods are able to reconstruct very complex objects, such
as trees. However, they usually suffer from quantization artifacts
and are very expensive in both space and time costs.

In boundary-based methods [4, 9], silhouette cones are
represented as boundary elements, such as surfaces or lines. The
visual hull is constructed by computing the intersection of these
elements, and the result could be composed by a group of surfaces
patches, line segments, or points. Such methods usually consume
little memory and run faster than voxel-based methods, and
quantization artifacts are avoided. If necessary, boundary-
represented visual hull could also be triangulated into meshes to
produce an explicit 3D model. That makes it more useful in
applications. However, these methods cannot reconstruct concave
or very complex objects.

Image-based Visual Hull Rendering Method

In this paper, we adopt a method called Image-based Visual
Hull (IBVH). It is a boundary-based method, originally proposed
by Matusik et al [4].

In this algorithm, silhouettes are represented as a bench of 3D
rays emitted from a desired view, and the resulting visual hull is
made up of a group of line segments. It is remarkable that the
computing is limited to the image space of the reference images,



’ = 3 ‘n (—J\))
Reference B _.

Reference

Desired

Figure 1. The three steps of IBVH computing [4]: 1) A desired viewing ray is
projected to a reference image. 2) The epipolar line intersects the silhouette.
3) The resulting 2D intervals are projected back to 3D and get corresponding
3D segments.

and the result is view-dependent, which makes the method quite
efficient.

As illustrated in Fig. 1, the kernel algorithm of IBVH method
includes three main steps:

First, for every pixel of the desired view, a viewing ray is
calculated, which is emitted from the virtual camera center and
passes through current pixel. By using the calibration information
of cameras and epipolar geometry theory, the projection of this
viewing ray on a reference image, i.e. the epipolar line could be
computed.

Second, the epipolar line intersects the 2D silhouette on the
reference image, and results in a group of 2D intervals. To reduce
the computation cost and increase speed, the original algorithm
sorts silhouette edges in so-called bin structures by their slopes. In
our implementation, we adopt a different strategy in building bins:
instead of slopes, the edges are sorted by their direction angles, so
that all edges could be properly sorted, even when the epipole (the
intersection point of all epipolar lines) falls in the object area.

Third, the 2D intervals on the reference image are projected
back to 3D space and get corresponding 3D segments on the
viewing ray. Then the intersection of all the 3D segments from all
the reference images indicates the visual hull boundary at current
pixel of desired view. Projecting the nearest endpoint of final 3D
segments onto the reference images, the color of current pixel
could be synthesized.

Removing Highlight Spots on Visual Hull

The IBVH rendering method provides great convenience in
finding pixel correspondence between reference images. Utilizing
this correspondence, we could rapidly remove highlight spots by
resampling the target image, using the information from its
counterparts on other reference images.

To reduce computing cost and minimize the error introduced
by pixel mapping and resampling, we first select sub-images that
contain highlight spots interactively. The resampling performance
would be applied only to these selected highlight sub-images, and
the rest part of the image would remain unchanged.

Pixel Correspondence between Reference Images

The approach to finding pixel correspondence between
different reference images is similar to that of rendering a desired
new view in IBVH, as described in the last section. Their
fundamental differences lie in: 1) When rendering a desired view,
the target image is a new, virtual and synthesized one, but here it is
exactly one of the reference images; 2) The calculations are no
longer performed over the whole image, but limited to the selected
highlight sub-images.

Fig. 2 gives an illustration of how pixel correspondences are
found. Given a target image lo, for every pixel po in a highlight
sub-image, we could also compute a 3D viewing ray r. For another
reference image Iy, the epipolar line of p, (denoted as lg) is
calculated by using the fundamental matrix between I, and Iy. If
line I, intersects the silhouette of I at point p.¥ and py¥, then there
are two 3D rays, r,* and ry* that are emitted from camera Cy and
pass through p,¥ and p,¥, respectively. Note that r, r.“ and r,* are all
in the same plane. Therefore, they would intersect and result in a
3D segment (v, VY.

Applying the same calculation to other reference images, we
get a group of 3D segments {(v,X, vs¥) | k=1...n} (n is the number
of images in use). The intersection of all these segments, denoted
as (va, Vp), is considered as the intersection of r and the visual hull
of the object, and the nearer endpoint v, is the corresponding 3D
point of pixel po. Utilizing the calibration information of camera
Cx, V, can be projected onto image Iy, and get pixel p. So far, we
have found the corresponding pixel of py on every reference
images.

Figure 2. The procedure of looking for the corresponding pixels of pp on
other reference images.

Highlight Sub-image Resampling

When the counterparts of a highlight sub-image on other
reference images are found, we must re-calculate the color of its
pixels to reduce highlight effect. This is completed by blending the
appearance colors of pixel py and its corresponding pixels {px |
k=1...n}.

The fact that we could take advantage of is: usually, due to
the relative movement of the object and the light, most part of the



Figure 3. The counterparts of a highlight sub-image. Left: The target image
(the yellow rectangle is the highlight sub-image); Right: The counterparts of
the sub-image on two other reference images (Note that they include little
highlight in them, because the object rotates while the light does not).

corresponding region of current sub-image is out of highlight area
(Fig. 3). Based on this fact, we assume that the majority of the
appearance colors of {py | k=0...n} are mainly distributed around
the true diffuse color. Thus, when blending the colors, the pixel
whose color deviates far from the others would be given small
weight. On the contrary, those that are closer to the average color
would be given larger weight.

In fact, highlight could be represented and detected well
enough in gray-scaled images, so we need only calculate the gray
level deviation of the pixels. That makes the calculation simpler.
Let gy be the gray level of pixel py, and the average gray level of

{p« | k=0...n}is
1 n
gavg :7ng' (1)
NiSo

Then the weight of p, could be defined by the reciprocal of the
squared deviation of g:

1
Wk = Ck 72 (2)

| 9 — gavg |
The coefficient ¢ is a constant, which guarantees the sum of w to

be 1. Finally, the colors of {py | k=0...n} are blended according to
the following formula:

R

i . 3
G|=| D wG, ®
B

Here, (R, Gy, By) is the RGB color of py, and (R, G, B) is the final
color for pixel po.

Note that we assume n reference images (besides the target
image) are used in resampling and blending a pixel. These n
images are selected from all reference images according to the
angles between the viewing ray of current pixel and the rays of its

corresponding pixels. Only the images with the smallest angles, i.e.

the closest n images are used to fix the target pixel.

Using a larger number of images will make the average color
closer to the true color and help to filter out highlighted pixels.
However, it does not always lead to better result, for blending
more pixel colors would cause blurring effect, especially in the
areas with complex texture. To get a globally better result, we
adjust the value of n according to each sub-image’s gray level
deviation sum.

Figure 4. The result of removing highlight spots from reference images.
The left are original images (yellow rectangles are highlight sub-images);
the right are the resampled image, in which highlight spots have been
removed seamlessly.

Assume the current sub-image is composed of m pixels, and
each pixel has a gray level of b;. Then the average gray level is

1 m
bavg = z bi ! “
miz
and the deviation sum is
m
bdev = Zl bi - bavg |2 : (5)
i=1
Then a given threshold 7 determines the value of n:
n:{Nmax' bdev>z. (6)
Nmin’ bdev <7

That means a sub-image with more complex texture will be given
a smaller n to prevent blurring, and a sub-image with simpler
texture will be given a larger n for smoother result.

Experimental Results

Applying the method described above, we can remove
highlight spots from a group of cup photos and get satisfying
rendering results.

The original data includes 23 images, taken around the object
by a digital camera. There are obvious highlight spots in each
image. They are selected as in the left column of Fig. 4 (each
rectangle is a highlight sub-image). Using the correspondence in
the visual hull, the counterparts of a sub-image can be found in
other images (as shown in Fig. 3). Then, each pixel in the sub-
image is blended with its corresponding pixels, and result in an
image without highlight spots (right column of Fig. 4).

When deciding the number of images in use, we let Nyx=9
and Npin=4, i.e. using 9 closest images in resampling a simple-
textured sub-image, and 4 in complex sub-images.



Figure 5. The results of removing highlight spots from several reference images, and the corresponding visual hull rendering result. Top row: reference
images (left) with highlight spots and their rendering result (right); Bottom row: resampled reference images (left) and the new rendering result without

highlights (right).

More highlight removal results are shown in the left part of
Fig. 5. With these resampled reference images, we can run visual
hull method again to render the object at new viewpoints. The
rendering results are free from highlights and are more realistic
and precise in color (right of Fig. 5).

Furthermore, highlight-free visual hulls would make it
possible to change the illumination in the virtual environment, and
re-light the object. All we need to do is re-calculating the diffuse
and reflection color of the object according to the virtual lights.

References

[1] A. Agrawal, R. Raskar, S.K. Nayar and Y. Li, Removing Photography
Artifacts using Gradient Projection and Flash-Exposure Sampling,
Proc. ACM SIGGRAPH 2005, pg. 828. (2005).

[2] P.Tan,S. Lin, L. Quan and H. Shum, Highlight Removal by
Illumination-Constrained Inpainting, Proc. IEEE International
Conference on Computer Vision 2003, pg. 164. (2003).

[3] P.Pérez, M. Gangnet and A. Blake, Poisson Image Editing, Proc.
ACM SIGGRAPH 2003, pg. 313. (2003).

[4] W. Matusik, C. Buehler and R. Raskar, Image-Based Visual Hulls,
Proc. ACM SIGGRAPH 2000, pg. 369. (2000).

[5] B.G.Baumgart, Geometric Modeling for Computer Vision, Ph.D.
thesis, Stanford University, October 1974.

[6] M. Li, Towards Real-Time Novel View Synthesis Using Visual Hulls,
Ph.D. thesis, Max-Planck-Institut fur Informatik, September 2004.

[7] K.N. Kutulakos and S.M. Seitz, A Theory of Shape by Space Carving,
International Journal of Computer Vision, Marr Prize Special Issue,
38, 3, pg. 199. (2000).

[8] G. Slabaugh, B. Culbertson, T. Malzbender and R. Schafer, A Survey
of Methods for Volumetric Scene Reconstruction from Photographs,
Proc. International Workshop on VVolume Graphics 2001, pg. 81.
(2001).

[9] K.M. Cheung, S. Baker and T. Kanade, Visual Hull Alignhment and
Refinement Across Time: A 3D Reconstruction Algorithm
Combining Shape-From-Silhouette with Stereo, Proc. IEEE
Conference on Computer Vision and Pattern Recognition 2003, pg.
11-375. (2003).

Author Biography

Jie Feng received her Bachelor degree from School of Mathematics
Science, Peking University, in 2000, and Ph. D. degree of Engineering
from Center for Information Science, Peking University, in 2005. Her
research interests include 3D modeling, digital geometry processing,
image-based rendering etc.

Liang Chen received his Bachelor degree (with honor), from School
of Electronic Engineering & Computer Science, Peking University in 2004.
He is now a graduate student in the same department. His research
interests include computational photography, non-photorealistic rendering,
computer animation etc.

Bingfeng Zhou received his PHD degree in Peking University. He is
now a researcher and doctoral supervisor in the Institute of Computer
Science and Technology, Peking University. His research interests
including digital geometry processing, image based rendering, none
photorealistic rendering, solid modeling, GPU technology and digital
video processing.



