
A Hardware Accelerated Approach for Accurate
Surface Splatting

Weihua An and Bingfeng Zhou

Institute of Computer Science and Technology, Peking University, Beijing, China

Abstract. Elliptical weight average(EWA) surface splatting provides
high quality rendering of complex point based models. But its software
based implementation can not reach real-time rendering. In order to
improve its performance, this paper presents a GPU based accelerated
approach, which is superior both in the rendering performance and visual
quality. This approach uses the OpenGL point primitive to approximate
the splat. Through analyzing the OpenGL view frustum, we deduce an
equivalent projective transformation, and therefore form a uniform for-
mat to represent the EWA surface splatting based on both software and
hardware implementation. According to the projective transformation,
we can accurately correct each splat depth. Our experiment results have
shown that our approach can render to 8M EWA filtered splats.

1 Introduction

For the connectivity and simplicity, the triangle meshes are widely adopted to
represent the 3D models. However, with the increasing requirements for geometry
accuracy, the triangle meshes become more and more dense. Sometimes, one or
several meshes are corresponding to one pixel on the screen[1]. This huge scale
data bring serious challenges to the rendering performance[2].

In contrast, the sampled point sets have superior capability to represent
sophisticated models. This representation defines 3D surfaces as a series of
points, and it need not maintain the connectivity and topology information.
Another advantage is that the point sets can be easily organized into a level-
of-detail(LOD)[3] data structure, which enables the multi-resolution rendering.
However, the main challenges for point based rendering are to identify the visi-
bility, and to fill the holes on the screen[4].

Nowadays, many rendering methods have been proposed[5][6][7]. Among them,
the surface splatting technology proposed by Zwicher et al[8] is acknowledged
as the best method, which not only solves the visibility and holes problem, but
also avoids aliasing artifacts. However, the original version of this method is
implemented by un-optimized software, and can not reach the real-time render-
ing. Based on this method, some accelerated measures are proposed. In order to
improve the rendering speed, they degrade the visual quality to some extent.

This paper presents a GPU based rendering approach, which employs the
OpenGL point primitive to implement the surface splatting. The most important



contribution is to deduce an equivalent projective transform formula from the
view frustum, which leads to a uniform format to represent the EWA surface
splatting based on both software and hardware implementation. According to
the projective transformation, we can also accurately obtain every splat’s shape
and depth values, which benefit identifying the visibility.

2 Previous Works

The concept of representing objects as a series of points was first proposed by
Levoy and Whitted[4]. In their work, they discussed some fundamental problems
such as surface reconstruction and visibility. Based on this work, many point
based rendering technologies have been proposed. For example, Grossman and
Dally[9] presented a pull-push algorithm to fill the hoses on the screen, which
is prone to the aliasing artifacts. Pajarola[3] organized the point sets as a LOD
data structure, and adopted quantized normal representation, which benefits
multi-resolution rendering.

Recently, Ewicker et al[8] presented the EWA surface splatting technique,
which not only solves the visibility and holes problem, but also avoids alias-
ing artifacts. Because the EWA filter involves quite complex computation, this
method can not reach real-time rendering.

All of the above software methods can not satisfy the real-time requirement.
In order to improve the rendering speed, Rusikiwicz and Levoy[10] firstly em-
ployed graphics hardware to accelerate point based rendering. Considering the
large scale datasets of Digital Michelangelo Project[2], they used a hierarchy
of bounding spheres to organize the point sets. They also proposed a two-pass
rendering approach to blend the overlapped splats, which is adopted by many
other accelerated methods.

Stamminger et al[11] improved the rendering performance to 5M surface
splats per second, and Botsch’s accelerated method[12] can reach the speed of
10M splats per second. However, all of them didn’t consider the aliasing problem.

Ren et al[13] implemented object space EWA surface splatting, which renders
every point as a textured rectangle in the object space. Since the data amount is
increased by a factor of 4, the rendering performance isn’t improved remarkably.

In contrast, some methods used OpenGL point primitive to approximate the
EWA filter, and didn’t increasing the data sets. Among these methods[14][15],
the depth correction for every pixel is not accurate, which causes negative effects
on visibility identification.

3 Screen Space EWA Surface Splatting

In this section, we briefly review the surface splatting theory, which is discussed
in detail in the Zwicker’s paper[8]. The surface splatting is composed of two
components: the object space reconstruction kernel and the screen space band-
limited filter. The former is used to reconstruct a continuous surface from discrete
points, and the latter is adopted to avoid the aliasing artifacts.



We use {Pk} to represent a set of discrete points, which are sampled on
a continuous 3D surface. For each point, the coefficient wk denotes its color
attributes. From this point set, we define a continuous texture function on the
corresponding surface, which is the reconstruction kernel. For a position Q on
the surface, we construct a local coordinate system in its small neighborhood.
Therefore, the position Q and the point set {Pk} have local coordinates u and
uk, respectively. Then, the continuous texture function fc(u) can be expressed
as:

fc(u) =
∑

k∈N

wkrk(u− uk) (1)

where rk is the basis function for the point Pk in the local coordinate system.
To render an object, the texture function fc(u) should be warped to screen

space. Because the sampling frequencies in the object space and the screen space
are different, a band-limited filter is required to eliminate the aliasing artifacts.
Therefore, for a coordinate x on the screen, the texture function gc(x) can be
expressed as:

gc(x) =
∑

k∈N

wkρk(x) (2)

where ρk(x) = (r′k
⊗

h)(x−mk(uk)).
Here, r′k denotes the mapped reconstruction kernel, and h denotes the band-

limited filter in screen space. mk denotes the local affine approximation of the
projection mapping x = m(u) for the point uk. After Taylor expansion, it can
be expressed as:

mk(u) = xk + Jk(u− uk) (3)

where Jk is the jacobian matrix, and Jk = ∂m(uk)
∂u .

The filter function ρk(x) in the formula (2) is the resampling kernel, which is
expressed by the convolution of the warped reconstruction kernel and the band-
limited filter. This approach is called surface splatting. In the paper of Zwicker et
al[8], both the reconstruction kernel and the band-limited filter are expressed as
an elliptical Gaussian function, and so the Gaussian resampling kernel is called
the EWA filter.

4 Hardware Accelerated Surface Splatting

We use the OpenGL point primitive to approximate the splat, and adopt the
Cg language[16] to program the vertex shaders and fragment shaders. The tra-
ditional two-pass algorithm[14] is implemented to identify visibility and blend
every pixel colors. During the first pass, to fill the depth buffer, the points are
slightly shifted against the viewer by an offset ε, and rendered without lighting.
In the second pass, the points are rendered with lighting and blending, while
the depth buffer is not writable. The EWA filter is also computed and stored in



every fragment’s alpha component in the second pass. Finally, every pixel color
must be divided by the sum of weights stored in its alpha component.

The main challenge of these two passes is to correct every fragment’s depth
value. In order to accurately solve this problem, a correct projection transfor-
mation is needed to compute formula (3). In the following section, we will define
a projection transformation from the OpenGL view frustum.

4.1 Projection Transformation

In order to identify the relationship between a 3D point P and a pixel X on
the screen, we must define the projection transformation between them. In the
world coordinates, the projection transformation can be defined as:

X = AR(P−C) (4)

where

A =




f 0 0
0 f 0
0 0 1




here, f denotes the focal length, R denotes the rotation matrix, and C denotes
the viewpoint.

Because the projective transformation is substituted by a view frustum in
OpenGL(Figure 1), we must identify the parameters f , R, and C.

Any object position is located in the camera space, after multiplied by the
model view matrix M which can be directly obtained in OpenGL. It means that
the viewpoint is the origin O after the model view transformation. Therefore,
the viewpoint in the world space can be obtained using formula (5). Meanwhile,
the model view matrix M can be looked as the rotation matrix R.

C = M−1O (5)

According to the view frustum in OpenGL (Figure 1), the projection matrix
can be defined as follows.




cot(v/2)
a 0 0 0
0 cot(v/2) 0 0
0 0 zf +zn

zn−zf

2zf zn

zn−zf

0 0 −1 0




where, the variable v denotes the angle of the filed of view along the y-axis,
a denotes the ratio of the frustum, and zn, zf are the distances between the
viewpoint and the two clipping planes along the negative z-axis.

Based on this projection matrix, the focal length can be defined as follows.
For a point (x, y, z, 1)T in the camera space, we can multiply its coordinates by
the projection matrix , and obtain the result:

(
cot(v/2)

a
x, cot(v/2)y, (z

zf + zn

zn − zf
+

2zfzn

zn − zf
),−z)T



Therefore, its normalized coordinates (x′, y′) in the view port can be defined
as:

x′ =
cot(v/2)x
−az

(6)

y′ =
cot(v/2)y

−z
(7)

where the value of x′ and y′ is in the field of [-1, 1].
If we use the variable w and h to represent the width and height of the

window, its corresponding coordinates in the window can defined as:

x′′ =
cot(v/2)x
−az

· w

2
(8)

y′′ =
cot(v/2)y

−z
· h

2
(9)

For a = w/h in OpenGL, we can further simplify the formula (8) as:

x′′ =
cot(v/2)x

−z
· h

2
(10)

According to the theory of pinhole imaging, the relationship between the
coordinates (x, y, z, 1)T and (x′′, y′′) can be described as:

x′′

f
=

x

−z
(11)

y′′

f
=

y

−z
(12)

Comparing and analyzing the formula (9) (10) (11) (12), we have the conclu-
sion: f = cot(v/2). h/2 can be looked as the scale factor from the view port to
the window. Although the focal length is imaginary, this conclusion is coherent
with the projection transformation in OpenGL.

By far, we have defined a projection transformation from the known parame-
ters in OpenGL. Based on the projection transformation, the EWA filter can be
directly computed by the graphics hardware following the software method[8].

4.2 The Splat Size and Shape

In OpenGL, each splat can be rasterized into a rectangle of l × l pixels on the
window. Therefore, a proper distance l must be determined to assure that all
the valid fragments can be generated.

According to the sampling distance of the point set, each splat’s size can be
determined in the vertex shaders. As shown in Figure 2, the edge length l of the
rectangle formed by splatting the point P can be defined as:



Fig. 1. The view frustum in OpenGL.
Fig. 2. Defining the edge length of a
splat.

l = 2r
f

d(C,P )
(13)

where d(C,P ) is the distance between the viewpoint C and the sampled point P,
and r denotes the sampling distance at the point P.

The splat’s shape can be identified by programing the fragment shaders to
eliminate all the invalid fragments. The detail procedure is presented as follows.

Given that a fragment with window coordinate (x, y) is formed by splatting
the 3D point P, its corresponding coordinate (u, v) in the local coordinate system
of the point P can be obtained by computing the formula (3). Ren et al[13] have
provided an algorithm to compute the Jacobian matrix. With the condition of√

u2 + v2 ≤ 1, we can identify whether the fragment is valid.
On the other side, according to the projection transformation discussed in

last section, we can reproject each fragment into 3D space. As shown in Figure
3, the point Qv on the screen is obtained by splatting the point P with the
normal np. It is reprojected into 3D space, and crossed with the plane defined
by the point P. Depending on the distance between the crossed point Q and P,
we can also judge the fragment’s validity.

4.3 Correcting Splat Depth

For one splat, all the fragments generated by OpenGL have a common depth
value. These inaccurate depth values will cause failed visibility identification[13],
so they must be corrected. An accurate depth correction must follow two impor-
tant points. The first point is that each fragment depth value should be along
the view rays rather than the z-axis in the camera space[13]; the second point is
that the nonlinear distribution used in OpenGL should be avoided(Figure 4).

According to the projection transformation, we can accurately correct the
depth value. As shown in figure 3, the crossed point Q can be obtained by
the ray-casting algorithm presented in the last section. The distance between
the point Qv on the screen and Q is the accurate depth value. Note that the
corrected depth value should be normalized into the field of [0, 1], which is
supported by OpenGL.



Fig. 3. Correcting the splat shape and
depth value.

Fig. 4. The nonlinear distribution of
the depth values in OpenGL.

4.4 Computing the EWA Filter

According to the theory of surface splatting, the formula (3) must be computed
for each fragment. In order to improve the rendering performance, we adopt
the approximate EWA filter proposed by Botsch et al[15]. They use the window
with 2× 2 pixels to clamp each splat, which guarantees that the radius of each
splat is no less than 1. Therefore, enough fragments are generated for antialias-
ing purposes. This means that we should additionally consider the 2D distance
between the current fragment and its splat center, when judging the fragment
validity. Following this strategy, the final EWA weights can be precomputed, and
stored in a 1D texture image. Therefore, each fragment weight can be obtained
by sampling the texture image.

5 Implementation and Results

We have applied our approach to render various models generated from virtual
and real objects, and achieved very satisfactory results. For a virtual object,
we create a LDC model[17] by sampling its surfaces from three sides of a cube.
This manner can generate uniformly sampled points, and reduce redundant data
furthest. For a real object, an image based modeling method[18] is adopted to
generate a set of points with such attributes like light fields, reflectance fields.

Various results rendered by our approach are shown in Figure 5. The Beethoven,
cow and head models are rendered with only diffuse reflection, and the man
model is rendered with both diffuse and specular reflection. The cup and horse
models with more colorful texture are generated from real objects.

In order to test the antialiasing effect, a checkerboard shown in figure 6 is
rendered by different methods. It includes 250k points, and each grid has 100
points. The top image is rendered by directly projecting each point onto the
screen. The middle and bottom images are rendered without and with the EWA
filter, respectively.

Octree based data structure[3] is very effective for visibility judgment. How-
ever, this loose data structure will become the bottleneck for data transfer. In
our implementation, we use the interleaved vertex arrays to arrange the data,
and the vertex buffer object will be the better option. The invisible points are



eliminated in the vertex shaders by judging the angle between view ray and each
vertex normal. The multi render target may be the best choice to decrease the
computation costs in the fragment shaders[15].

The results we present are measured on 2.8GHz Pentium4 with a NVIDIA
GeForce6800 GT graphics card, running Window XP. Table 1 shows the ren-
dering performance for different window resolutions. From this table, we can see
that our method can render up to 8M filtered splats per second with 1024×1024
resolution. For different window resolution, the rectangles generated by OpenGL
have different sizes. The edge length is increased from 2 or 3 to 5 or 6 pixels,
when the window resolution is increased from 512 × 512 to 1024 × 1024. For
higher resolution, more fragments are generated, and the computation costs for
EWA filter are increased.

Table 1. Rendering performance of our approach in frames per second for several
models shown in figure 5 (the splat size is 2 or 3 for the 512× 512 resolution, and 5 or
6 for the 1024× 1024 resolution.

512× 512 1024× 1024
objects points (2, 3) (5, 6)

Unfilter Filter Unfilter Filter

beethoven 565k 31.6 15.5 19.3 14.6

head 340k 50.9 25.6 34.1 17.1

cow 249k 68.1 34.5 54.7 28.3

man 168k 98.8 52.1 68.8 36.6

Compared with the work of Ren et al[13], our approach provides a projection
transformation, which benefits EWA filter computation. It also shows superior
rendering performance, for their method processes a rectangle for each vertex.

Guennebaud and Paulin[14] also provided an accelerated method to imple-
ment surface splatting. But in their work, the corrected depth values are nonlin-
early distributed, which makes it difficult to select a proper offset for visibility
identification. As shown in Figure 7, the same Venus model is located in two
positions which have different distances to the viewpoint, and the same offset is
selected. The nonlinear distributed depth values lead to failed visibility identifi-
cation on near object, and our method avoids it effectively.

6 Conclusion

We have described an efficient accelerated approach for rendering point based
models, which is based on the EWA surface splatting technology. From the
OpenGL view frustum, we can deduce the equivalent projective transformation.
Based on the projective transformation, the splat sizes and shapes are easily
determined, and each splat depth value is accurately corrected. In the future,



we will focus on extending our method to handle more complex models, and
realizing some particular effects such as transparency.

Fig. 5. Several models rendered by our approach with different lighting condition.

References

1. Deering, M.: Data complexity for virtual reality: where do all the triangles go?
In: IEEE Virtual Reality Annual International Symposium (VRAIS), Seattle, WA
(1993) 357–363

2. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., L.Pereira, M.Ginzton,
Anderson, S., Ginserg, J., shade, J., Fulk, D.: The digital michelangelo project:
3d scanning of large statues. In: SIGGRAPH2000 Proceedings, Los Angeles, CA
(2000) 131–144

3. Pajarola, R.: Efficient level-of-detail for point based rendering. In: Proceedings
IASTED Computer Graphics and Images. (2003)

4. Levoy, M., Whitted, T.: The use of points as display primitives. Technical Re-
port TR85-022, the University of North Carolina at Chapel Hill, Department of
Computer Science (1985)

5. Kobbelt, L., Botsch, M.: A survey of point based techniques in computer graphics.
Computers & Graphics 28(6) (2004) 801–814

6. Alexa, M., Behr, L., Cohen-Or, D., Fleishman, S., Levin, D., , Silva, C.: Point set
surfaces. In: Proceedings of IEEE Visualisation, San Diego, CA (2001) 21–28



Fig. 6. Point based checkerboard ren-
dered by different methods.

Fig. 7. The rendered results with dif-
ferent depth correction(Left: nonlinear
depth correction. Right: depth correc-
tion of our method.

7. Sainz, M., Pajalora, R.: Point-based rendering techniques. Computers & Graphics
28(6) (2004) 869–879

8. Zwicker, M., pfister, H., Vanbaar, J., Gross, M.: Surface splatting. In: SIG-
GRAPH2001 Proceedings, Los Angeles, CA (2001) 371–378

9. Grossman, J.P., Dally, W.: Point sample rendering. In: Rendering Techniques ’98,
Springer Wien, Vienna, Austria (1998) 181–192

10. Rusinkiewicz, S., Levoy, M.: Qsplat: a multiresolution point rendering system for
large meshes. In: Proceedings of the 12th Eurographics Workshop on Rendering,
London, UK (2001) 151–162

11. Stamminger, M., Drettakis, G.: Interactive sampling and rendering for complex
and procedural geometry. In: Proceedings of the 12th Eurographics Workshop on
Rendering, London, UK (2001) 151–162

12. Botsch, M., Kobbelt, L.: High-quality point-based rendering on modern gpus. In:
Proceedings of Pacific Graphics03, Alberta, Canada (2003) 335–343

13. Ren, L., Pfister, H., Zwicker, M.: Object space ewa surface splatting: A hard-
ware accelerated approach to high quality point rendering. In: Proceedings Of
Eurographics 02. (2002) 461–470

14. Guennebaud, G., Paulin, M.: Efficient screen space approach for hardware accel-
erated surfel rendering. In: Proceedings of Vision, Modeling, and Visualization 03,
Munich, Germany (2003)

15. Botsch, M., Hornung, A., M.Zwicker, Hobbelt, L.: high-quality surface splatting
on today’s gpus. In: Eurographs symposium on point based graphics(2005). (2005)

16. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: a system for program-
ming graphics hardware in a c-like language. ACM Transaction on Graphics 22(3)
(2003) 896–907

17. Pfister, H., Zwicker, M., Vanbaar, J., Gross, M.: Surfels: Surface elements as
rendering primitives. In: SIGGRAPH2000 Proceedings, Los Angeles, CA (2001)
335–342

18. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., McMillan, L.: Image-
based 3d photography using opacity hulls. In: SIGGRAPH2002 Proceedings, San
Antonio, Texas (2002) 427–437


