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Abstract. This paper provides a novel method for co-segmentation,
namely simultaneously segmenting multiple images with same foreground
and distinct backgrounds. Our contribution primarily lies in four-folds.
First, image pairs are typically captured under different imaging condi-
tions, which makes the color distribution of desired object shift greatly,
hence it brings challenges to color-based co-segmentation. Here we pro-
pose a robust regression method to minimize color variances between
corresponding image regions. Secondly, although having been intensively
discussed, the exact meaning of the term ”co-segmentation” is rather
vague and importance of image background is previously neglected, this
motivate us to provide a novel, clear and comprehensive definition for
co-segmentation. Thirdly, it is an involved issue that specific regions tend
to be categorized as foreground, so we introduce ”risk term” to differen-
tiate colors, which has not been discussed before in the literatures to our
best knowledge. Lastly and most importantly, unlike conventional linear
global terms in MRFs, we propose a sum-of-squared-difference (SSD)
based global constraint and deduce its equivalent quadratic form which
takes into account the pairwise relations in feature space. Reasonable
assumptions are made and global optimal could be efficiently obtained
via alternating Graph Cuts.

1 Introduction

Segmentation is a fundamental and challenging problem in computer vision.
Automatic segmentation [1] is possible yet prone to error. After the well-known
Graph Cuts algorithm is utilized in [2], there is a burst of interactive segmen-
tation methods ([3], [4] and [5]). Also it is proven that fusing information from
multiple modalities ([6], [7]) can improve segmentation quality. However, as ar-
gued in [8], segmentation from one single image is too difficult. Recently there
is much research interest on multiple-image based approaches.

In this paper we focus on co-segmentation, namely simultaneously segmenting
image pair containing identical objects and distinct backgrounds. The term ”co-
segmentation” is first introduced into the computer vision community by Carsten
Rother [8] in 2006. Important areas where co-segmentation is potentially use-
ful are broad: automatic image/video object extraction, image partial distance,
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Fig. 1. Experimental results for our proposed co-segmentation approach

video summarization and tracking. Due to space consideration, we focus on the
technique of co-segmentation itself, discussing little about its applications.

We try to solve several key issues in co-segmentation. Traditional global terms
in MRF are typically linear function, and can be performed in polynomial time
[9]. Unfortunately, such linear term is too limited. Highly non-linear, challenging
global terms [8] are proposed for the goal of co-segmentation, whose optimiza-
tion is NP-hard. Moreover, although having been intensively discussed, the exact
meaning of the term ”co-segmentation” is rather vague and importance of image
background is previously neglected. In this paper, we present a more compre-
hensive definition and novel probabilistic model for co-segmentation, introduce a
quadric global constraint which could be efficiently optimized and propose Risk
Term which proves effective to boost segmentation quality.

2 Generative Model for Co-segmentation

2.1 Notations

The inputs for co-segmentation are image pairs, and it is usually required that each
pair should contain image regions corresponding to identical objects or scenes. Let
K = {1, 2} and Ic = {1, . . . , N} are two index sets, ranging over images and pix-
els respectively. k and i are elements from them. Zk and Xk are random vectors
of image measurements and pixel categories (foreground/background in current
task). zki or xki represents i-th element from k-th image. We assume images are
generated according to some unknown distribution, and each pixel is sampled in-
dependently. Parameters for image generation model could be divided into two
parts, related to foreground or background regions respectively. Let θkf and θkb

denote object/background parameters for k-th image.

2.2 Graphical Models for Co-segmentation

Choosing appropriate image generation models is the most crucial step in co-
segmentation. However, such models are not obvious. As in the previous work in
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Fig. 2. Generative models for co-segmentation. (a) Rother’s model (refer to [8] for
details) based on hypothesis evaluation. J = 1 and J = 0 correspond to the hypothesis
that image pairs are generated with/without common foreground model respectively.
(b) Generative model proposed in this paper for co-segmenting.

[8], Rother etc. selected 1D histogram based image probabilistic models, whose
graphical models are drawn in Figure 2(a). As can be seen, Rother’s approach
relies on hypothesis evaluation, namely choose the parameters maximizing the
desired hypothesis that two images are generated in the manner of sharing non-
trivial common parts. It could also be equivalently viewed as maximizing the
joint probability of observed image pairs and hidden random vectors (specifically
speaking, these are θkf , θkb and Xk in Figure 2(a), where k ranges over {1, 2}).

However, the above-mentioned generative models are not practical although
flexible. The drawbacks lie in several aspects. Firstly, Rother’s model makes too
many assumptions for the purpose of feasibility, which complicates parameter
estimation and makes this model sensitive about noises. Some model parameters
even could not unbiasedly estimated due to lack of sufficient training samplings.
For some parameters there is only one sampling could be found. An example for
this point is that, image likelihoods under hypothesis J = 0 are always almost
equal to 1, which is certainly not the true case.

Secondly, the final deduced global term in [8] is highly non-linear. In fact it
could be regarded as the classical 1-norm if we treat each histogram as a single
vector, which complicated optimization for optimal pixel labeling.

Lastly and most importantly, the authors did not seriously take into ac-
count the relation between background models in the image pair. Let hkf and
hkb denote image measurement histograms (typically color or texture) of fore-
ground/background for k-th image. The final energy function to be minimized in
[8] only contains an image generation term proportional to

∑
z |h1f (z)−h2f (z)|,

while background parameters disappear. This greedy strategy sometimes brings
mistake. Here we argue that the effect of background could not be neglected.
An example to illuminate our idea is given in Figure 3, where two segmenting
results are shown for comparison. In case 1, the extracted foregrounds match
each other perfectly if just comparing their color histogram. However, it seems
the segmentation in case 2 is more preferable, although the purple regions in
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Fig. 3. An example to illustrate the relation between ”optimality” and ”maximality”.
The purple region in the bottom image is slightly larger than the top image’s. If we
only consider foreground models as in [8], case 1 is optimal. However, it is not maximal,
since the purple regions are supposed to be labeled as foreground as in case 2.

the two images differ greatly in size. In other words, we should consider both
”optimality” and ”maximality”. Case 1 is an extreme example, which is optimal
according to the aforementioned criteria, yet not maximal. We argue that the
task of co-segmentation could be regarded as finding the maximal common parts
between two feature sets together with spatial consistency. Unlike [8], we obtain
maximality by introducing large penalties if the backgrounds contain similar
contents. A novel energy term about image backgrounds is proposed and detailed
in Section 4.

Our proposed graphical model could be found in Figure 2(b). At each phase,
we optimize over X on one image by assuming parameters of the other image
are known (Note θ̂ in Figure 2(b) is colored in gray since its value is known.).
We solve this optimization using alternating Graph Cuts, which is illustated in
Figure 4. The joint probability to be maximized could be written as:

X∗ = arg max
X

P (X)P (Z|X, θ̂) (1)

To solve this optimization problem is equivalent to find the minima of its
negative logarithm. Denote E1 = − log P (X) and E2 = − logP (Z|X, θ̂). For
convenience we use the latter log form.

3 Preprocessing by Color Rectification

It is well known that RGB color space is not uniform, and each of the three
channel is not independent. It is previously argued in [10] that proper color
coordinate transformations are able to partition RGB-space differently. Similar
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Fig. 4. Illustration for alternating Graph Cuts. The optimization is performed in an
alternative style. The vertical arrows denote optimization with graph cuts, while the
horizontal arrows indicate building color histograms from segmentation X and pixel
measurements Z.

to the ideas used in intrinsic images [11], we abandon the intensity channel,
keeping solely color information. In practice, we first transform images from
RGB-space to CIE-LAB space, where the L-channel reprensents lightness of the
color and the other two channels are about color. After that, we perform color
rectification in two steps:

– Step One: Extract local feature points from each image, and find their cor-
respondences in the other image if existing.

– Step Two: Sample colors from a small neighborhood of matching points, use
linear regression to minimize color variance.

In step one, we adopts SIFT [12] to detect feature points. SIFT points are
invariant to rotation, translation, scaling and partly robust to affine distortion.
Also it shows high repeatability and distinctiveness in various applications and
works well for our task. Typically we can extract hundreds of SIFT points from
each image, while the number of matching point pairs varies according to current
inputs. An example for SIFT matching procedure could be found in Figure 8.
In the middle column of Figure 8, matching pixels are connected with red lines.
These matching points are further used to perform linear regression [13] within
each color channel. Colors are scaled and translated to match theirs correspon-
dences, so that color variances between image pair are minimized in a sense of
least squared error (LSE). An example can be found in Figure 5. Robust methods
such as RANSAC could be exploited to remove outliers.

4 Incorporating Global Constraint into MRFs

4.1 Notations

In this section we provide definitions for E1 and E2, which are the negative log
of image prior and likelihood respectively. Since we focus on only one image
each time, we will drop the k subscript and use it to index histogram bins. We
adopted the following notations for convenience:

– xi ∈ {1, −1}, where xi = 1 implies ”object”, otherwise background.
– Ih = {1, . . . , M} and Ic = {1, . . . , N} are index sets for histogram bins and

image pixels.
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Fig. 5. Illustration for color rectification. Variances of foreground colors affect final
segmentation results notably (see the top images in the third column, compare it with
the bottom segmentations). We operate in CIE-LAB color space. After color rectifi-
cation, 1-norm of distribution difference in A-channel is reduced to 0.2245, compared
with original 0.2552. And the results in B-channel are more promising, from 0.6531 to
0.3115. We plot color distribution curves in the middle column. Color curve for im-
age A remains unchanged as groundtruth and plotted in black, while color curves for
image B before/after rectification are plotted in red and blue respectively. Note that
the peaks in B-channel approach groundtruth perfectly after transformation. The two
experiments in rightmost column share same parameters.

– S(k) is the set of pixels that lies in histogram bin k.
– F (k) and B(k) denote the number of pixels belonging to foreground/

background in bin k. Specifically speaking, F (k) = 1
2 (|S(k)| +

∑
i∈S(k) xi),

B(k) = 1
2 (|S(k)| −

∑
i∈S(k) xi), where | · | means the cardinality of a set.

– Nf and Nb denotes pixel counts labeled as foreground/background across
the whole image. Nf = 1

2 (N +
∑

i∈Ic
xi), Nb = 1

2 (N −
∑

i∈Ic
xi).

– DIST (h1, h2) is a metric defined on histograms. We adopt a sum-of-squared-
difference (SSD) form, namely DIST (h1, h2) =

∑
k(h1(k) − h2(k))2.

4.2 Ising Prior for P (X)

We adopt the well-known Ising prior for P (X). Similar to [8], a preference term
is added to encourage larger foreground regions, whose strength is controlled
by a positive constant α. A second term is over neighboring pixels. This energy
term could be summarized as follows:

E1 = −α
∑

i

xi + λ
∑

i,j

cijxixj (2)

where cij = exp(−||zi − zj ||2/σ2) are coefficients accounting for similarity be-
tween pixel pairs.
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4.3 Global Term for P (Z|X, θ̂)

As argued before, the global constraint should take into account both the effects
of foreground/background. We adopt a simple linear combination of the two,
that is:

E2 = wfDIST (ĥf , hf ) − wbDIST (ĥb, hb) (3)

where ĥ denotes known histograms of the reference image, while h represents
histograms to be estimated. In practice we build 2D histogram from the two
color channels in LAB-space. It is obvious that this global term favors maximal
common parts: similar foregrounds, and backgrounds that are different from each
other as much as possible. For the purpose of tractability we assume wf = γ1N

2
f

and wb = γ2N
2
b , then E2 could be written as:

E2 = wfDIST (hf , ĥf ) − wbDIST (hb, ĥb)

= γ1N
2
f

∑

k

(
F (k)
Nf

− ĥf (k))2 − γ2N
2
b

∑

k

(
B(k)
Nb

− ĥb(k))2

= γ1

∑

k

F 2(k) − γ2

∑

k

B2(k) + γ1

∑

k

N2
f ĥ2

f (k) − γ2

∑

k

N2
b ĥ2

b(k)

−2γ1

∑

k

NfF (k)ĥf (k) + 2γ2

∑

k

NbB(k)ĥb(k) (4)

Now we will prove Equation 4 is actually quadric function about X . Denote
the first two terms in Equation 4 as T1, middle two as T2, the last two as T3,
thus E2 = T1 + T2 + T3. Recall that in Equation 2, parameter α indicates user’s
preference for the ratio Foreground size

Image size (typically set to 0.3 in our experiments),

thus we could deduce that
∑

i∈Ic
xi = (2α − 1)N . Basing on this observation, it

is easy to prove that:

– T1 = 1
2 (γ1 −γ2)

∑
∃k,i,j∈S(k) xixj +

∑
i∈Ic

pixi +const, where pi is coefficient
unrelated to X .

– T2 is unrelated to X .
– T3 =

∑
i∈Ic

qixi + const, where qi is coefficient concerning i-th pixel.

As a result, we could represent global term E2 in the following form:

E2 =
1
2
(γ1 − γ2)

∑

∃k,i,j∈S(k)

xixj +
∑

i∈Ic

(pi + qi)xi + const (5)

This novel quadratic energy term consists of both unary and binary con-
straints, thus fundamentally different from conventional ones used in [2], [3] and
[4], where only linear constraints are utilized. Moreover, it also differs from the
pairwise Ising term defined in Equation 2, since the latter performs on neigh-
borhood system in spatial domain while the pairwise term in Equation 5 works
in feature space. From a graph point of view, each adjacent pixel pair in feature
space (that is, they fall into the same histogram bin) is connected by an edge,
even if they are far away from each other in the spatial domain.
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4.4 Computation

To optimize above-defined energy function is challenging due to the existence of
quadric global constraint. Although optimization methods like graph cuts [14] or
normalized cuts [1] could found its optimal, required memory space is too huge
for current computer hardware. For image pairs with typical size of 800*600, the
global term usually gives rise to more than 1G extra edges, which is intolerant.
General inference algorithm like MCMC [15], hierarchical methods or iterative
procedures [8] are more favorable for such optimizing task.

However, the common drawback for these methods lies in that they are too
time-consuming, thus not suitable for real-time applications. To make a balance
between efficiency and accuracy, we let γ1 be equal to γ2 in Equation 5, reducing
the global term into a classical linear form. Experiments prove effectiveness of
this approximation.

4.5 Risk Term

Another important issue is seldom considered in previous work. For an input
image pair, small regions with unique color usually tend to be categorized as
”foreground” (see Figure 6 for an concrete example). This is mainly because
they affect E2 much slighter than the preference term in E1. To mitigate this
problem, we propose a novel constraint named Risk Term, which reflects the risk
to assign a pixel as foreground according to its color. h1, h2 denote 2D histograms
for image pair. For histogram bin k, its risk value is defined as follows:

R(k) =
|h1(k) − h2(k)|
|h1(k) + h2(k)| (6)

Fig. 6. Illustration for Risk Term. For the right image in (a), several small regions are
labeled as foreground objects (see the left image in (b)), after introducing risk term
they are removed. Also we draw the coefficients pi + qi in Equation 5 (normalized to
[0, 255]) in (c) and (d). Lower brightness implies more tendency to be foreground. The
benefit of risk term is obvious.
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Fig. 7. Comparison with Rother’s method. Parameters are identical in both experi-
ments: α = 0.3, λ = 50. Note that α corresponds to user’s prior knowledge about the
percentage of foreground in the whole image. It is shown that the way to choose α in
our method is more consistent with user’s intuition.

5 Experiments and Comparison

We apply the proposed method in a variety of image pairs from public image sets
or captured by ourselves. Experiments show our method is superior to previous
ones in aspects including accuracy, computing time and ease of use. Lacking color
rectification makes previous methods such as in [8] couldn’t handle input images
captured under very different illuminating conditions or cluttered backgrounds
(Figure 1, 5 and 6). Also, experiments shows the way to choose parameter in our
method is more consistent with user’s intuition (Figure 7). For typical 640*480

Fig. 8. A failure example due to confusion of foreground/background colors
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image pairs, the algorithm usually converges in fewer than 4 cycles, and each
iteration takes about 0.94 seconds on a Pentium-4 2.8G/512M RAM computer.

6 Conclusions and Future Work

We have presented a novel co-segmentation method. Various experiments demon-
strated its superiority over the state-of-the-art work. Our result (Figure 8) also
showed certain limitation of the algorithm due to only utilizing color informa-
tion; and our future work will focus on how to effectively utilize more types of
information such as shapes, textures and high-level semantics.
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