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Abstract 
In image-based visual hull (IBVH) rendering, 

undesired artifacts, such as highlight spots in reference 
images could often cause the decrease of rendering fidelity. 
In this paper, we propose a method that can automatically 
recognize and remove highlight spots from reference 
images, by utilizing the features of IBVH. 

First, sub-images containing highlight spots are 
extracted in a target reference image by analyzing its 
intensity histogram. Then, their counterparts in other 
images are calculated, according to the correspondence 
between reference images in visual hull rendering. At last, 
the illumination and color detail of the pixels in the sub-
images could be retrieved from their corresponding pixels 
by color blending. Thus, highlight spots can be removed 
seamlessly without affecting other regions of the image.  

Using this method, we can obtain more realistic and 
precise result, and re-lighting of the visual hull also 
becomes possible. 

1. Introduction 
Visual hull is an efficient technique for image-based 

rendering of real objects. It takes a group of images of the 
target object as input, and produces an approximate convex 
hull that contains the object. Compared with traditional 
geometry-based rendering methods, visual hull rendering 
usually has lower cost in data acquiring, and could produce 
more realistic result. 

However, as an image-based method, visual hull 
methods often suffers from the highlight spots on the 
images, which would cause undesired artifacts in rendering, 
especially when the illumination in the virtual environment 
is changed. 

Many image editing techniques have been proposed to 
remove highlight spots from images.  

A typical type of them requires more than one image at 
a single position to complete this task. For instance, a 
flash/no flash image pair is taken at the same position in the 
method of Petschnigg et al. [1]. Combining the ambient 
qualities of the no-flash image and the high-frequency detail 
of the flash image, a new image with higher quality then 
either input could be synthesized. This method simply 
removes the highlight areas by selecting them interactively 
and then replaces them with the information from the 
ambient image.  

Agrawal et al also introduce a pair of flash and ambient 

images in their work [2]. They compare the image gradients 
of both two images, and remove the highlight spots by 
combining the gradients with a linear weight. Furthermore, 
the reflection in the ambient image could also be reduced by 
a gradient projection.  

This kind of method is not practical in visual hull 
rendering, because it will largely increase the difficulty of 
acquiring and storing source images, and the complexity of 
the computation. 

Another kind of methods could work on a single image. 
Tan et al. proposed an illumination-constrained inpainting 
method [3]. It utilizes potential useful information contained 
by highlight pixels to estimate the underlying diffuse color, 
and guide the process of image inpainting. Similar works 
also include [4, 5]. 

The method of Pérez et al. [6] takes a different strategy. 
It changes local illumination by applying a non-linear 
transformation to the gradient field in the selected highlight 
area. The modified gradient is integrated back by solving a 
Poisson equation, and result in a new image without 
specular reflections. 

However, these methods only produce good results 
when highlight spots lie in areas with simple or regular 
textured background. On another aspect, single-image-
based methods cannot guarantee the consistency of 
corresponding areas in different source images, which is 
very important in visual hull rendering.  

In fact, visual hull method itself provides much 
convenience for highlight removal. The source images (also 
called reference images) of a visual hull usually have a lot 
of overlaps. Such redundancy will offer sufficient 
information to remove highlights. That is because the 
counterpart of a highlighted area in another image is often 
out of highlight, due to the relative movement of the object 
and the light. 

In our method, the sub-images containing highlight 
spots could be automatically extracted from a reference 
image, by analyzing its intensity histogram. Then their 
counterparts are found in other reference images, utilizing 
the calibration information of the cameras, during the 
constructing of the visual hull. Thus, the highlight sub-
images could be resampled from their counterparts, and a 
new image without highlights is generated by certain pixel 
blending strategy. With these new images, we could obtain 
more realistic and precise rendering result, and re-lighting 
of the visual hull is also possible. Furthermore, this method 
could also be used in image repairing. 

* The work was supported by the NSFC grants (No. 60573149). 
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In this paper, we employ an Image-based Visual Hull 
(IBVH) rendering method [7], which is described in the 
second section. In the third section, we introduce our 
method of automatic highlight sub-image extraction. The 
approach to resampling sub-images and removing highlight 
spots in IBVH rendering is detailed in the fourth section. 
The experiment results and some discussions are followed 
in the last. 

2. Visual Hull Rendering Methods 
The main idea of visual hull reconstruction comes from 

“Shape-from-Silhouette”. Each reference image is separated 
into foreground and background. The foreground mask, i.e. 
the silhouette, along with the calibration information of the 
camera, defines a back-projected cone in 3D space that 
contains the target object. Thus, the intersection of all 
silhouette cones forms a convex hull, which is the visual 
hull of the object. 

There are mainly two sorts of visual hull construction 
methods: voxel-based and boundary-based methods [8].  

Voxel-based methods [9, 10] usually start from a 
working volume, which contains the target object and is 
quantized into voxels. The voxels are one by one put 
through tests: those lie inside all silhouette cones are 
preserved; the others are cleared. Therefore, the remaining 
voxels form the visual hull of the object. These methods are 
able to reconstruct very complex objects, such as trees. 
However, they usually suffer from quantization artifacts and 
cannot get smooth modeling results. To solve this problem, 
the working volume has to be divided into larger quantity of 
voxels, but this will greatly increase the cost in both storing 
space and calculating time. 

In boundary-based methods [7, 11], silhouette cones are 
represented as boundary elements, such as surfaces or lines. 
The visual hull is constructed by computing the intersection 
of these elements, and the result could be composed by a 
group of surfaces patches, line segments, or points. Such 
methods consume less memory and run faster than voxel-
based methods, and quantization artifacts are avoided. If 
necessary, boundary-represented visual hull could also be 
triangulated into meshes to produce an explicit 3D model. 
That makes it more useful in applications. However, these 
methods cannot reconstruct concave structure or very 
complex objects. 

2.1 Image-based Visual Hull Rendering Method 
In this paper, we follow the main idea of a method 

called Image-based Visual Hull (IBVH). It is a boundary-
based method, originally proposed by Matusik et al [7]. 

In this method, the input is a group of images taken 
around the object with calibrated cameras. The silhouette 
cones of these reference images are represented as a bench 
of 3D rays emitted from the camera centers, each 
corresponds to a pixel on the silhouette. Then the 
intersection of the cones, i.e. the visual hull, is composed of 
a group of line segments.  

It is remarkable that in this method the computing is 
limited to the image space of the reference images, and the 

result is view-dependent, which makes the method quite 
efficient. 

As illustrated in Fig. 1, the kernel algorithm of IBVH 
method includes three main steps: 

1. For each pixel of the desired view, a ray emitted from 
the camera center and passing through current pixel is 
calculated. Using the calibration information and 
epipolar geometry theory, the projection of this ray on a 
reference image, i.e. the epipolar line could be computed.  

2. The epipolar line intersects the 2D silhouette on the 
reference image, and results in a group of 2D intervals.  

3. The 2D intervals are projected back to 3D space and get 
corresponding 3D segments on the viewing ray. Then 
the intersection of all the segments from all the reference 
images indicates the visual hull boundary at current 
pixel. Projecting the nearest endpoint of final 3D 
segments onto the reference images, the color of current 
pixel could be synthesized. 

To reduce the computation cost and increase speed, the 
original algorithm sorts silhouette edges in so-called bin 
structures by their slopes during step 2. Here in our 
implementation, we make an improvement in the strategy of 
building bins. Instead of slopes, the silhouette edges are 
sorted by their direction angles, so that the intersection 
could be properly performed even when the epipole (the 
intersection point of all epipolar lines) falls in the object 
area. 

3. Automatic Highlight Sub-image Extraction 
In order to remove highlight spots in a target image, the 

sub-images that contain these highlights must be extracted 
first. The following calculations will be restricted to these 
sub-images. That is because the highlight spots usually 
occupy only a small part of the image. The calculation over 
the whole image would lower the computing efficiency and 
image fidelity cannot be guaranteed. 

Khan et al. proposed an automatic highlight recog-
nizing method in their work [12]. They assume that the 
highlights are made up of the brightest pixels of the image. 
Then, in the intensity histogram, the level corresponding to 

 
Figure 1. The three steps of IBVH construction [7]. 1) A desired viewing 
ray is projected to a reference image. 2) The epipolar line intersects the 
silhouette. 3) The resulting 2D intervals are projected back to 3D and get 
corresponding 3D segments. 
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the minimum derivative is considered as the beginning 
threshold of the highlight pixels. 

However, this method was designed for HDR images, 
and doesn’t work so well in common images. As an 
adaptation, we set a constant lower bound of highlight pixel 
intensity Imin according to experiences. Then, the highlight 
threshold could be quickly found in interval [Imin, Imax] by 
binary search, where Imax is the maximum level of the pixel 
intensity. In our experiments, we usually control the 
highlight pixels to be 0.5%~4% of the whole image. An 
example is given in Fig. 2(b). 

Because the recognized highlight pixels are discrete 
and usually scattered, they are firstly grown into connected 
regions. This is completed with an eight-neighbored seed 
filling method: given a highlight seed pixel in RGB space, if 
one of its eight neighbors has identical color vector to it, 
then we also consider this neighbor as a highlight pixel, and 
use it as a new seed for further computation. The growing 
will stop when there is no more seed pixel exists. Extending 
highlight pixels into connected regions will prevent the 
appearance of fragmentary sub-images, and therefore will 
decrease the computing cost. 

After that, the extended highlight pixels are classified 
into several categories, with a C-average classification 
method. The initial classification is found by analyzing the 
image’s vertical and horizontal histograms. As illustrated in 
Fig. 3, if there are C1 wave crests in horizontal histogram 
and C2 in vertical histogram, then they will define C1×C2 
regions. Among them, those containing highlight pixels are 
considered as initial categories. Calculating the centroid of 
each category and re-allocating all the highlight pixels by 
their Euclidean distance, we would have the final 
classification. During this course, the category with too few 
highlight pixels would be ignored. 

Finally, the minimum sub-images containing each 
category could be easily extracted by finding their bounding 
boxes (Fig. 2(c)). 

4. Removing Highlight Spots on Visual Hull 
Taking advantages of the features of IBVH, the pixel 

correspondence between reference images could be easily 
found. Utilizing this correspondence, we could rapidly 
remove highlight spots by resampling the target highlight 
sub-image, using the information from its counterparts on 
other reference images. 

4.1 Finding Pixel Correspondence  
The IBVH rendering method provides great con-

venience in finding pixel correspondence between reference 
images. The approach to finding such correspondence is 
similar to that of rendering a desired new view. Their 
fundamental differences lie in: 

1. When rendering a desired view, the target image is a 
new, virtual and synthesized one, but here it is exactly 
one of the reference images;  

2. The calculations are no longer performed over the 
whole image, but limited to the selected highlight sub-
images now. 

Fig. 4 gives an illustration of how pixel corres-
pondences are found. Given a target image I0, for each pixel 
p0 in one of the highlight sub-images, there is also a 3D ray 
r emitting from camera canter C0. Its projection on another 
reference image Ik, i.e. the epipolar line le, could be calcu-
lated by using the fundamental matrix between I0 and Ik.  

Then le intersects the silhouette of Ik at pa
k and pb

k. 
Therefore, two rays ra

k and rb
k, emitting from camera Ck and 

pass through pa
k and pb

k, are calculated respectively. Note 
that r, ra

k and rb
k are in the same plane; therefore they would 

intersect and result in a 3D segment (va
k, vb

k).  
Repeating the calculation on all of the reference images, 

we get a group of such 3D segments {(va
k, vb

k) | k=1…n} 
(where n is the number of images in use). Their final 
intersection (va, vb) is considered as the intersection of r and 
the visual hull, and the nearer endpoint va is the 
corresponding 3D point of p0.  

Thus, utilizing the calibration information of camera Ck, 
va can be projected onto image Ik, and get pk, the 
corresponding pixel of p0.  

 
(a)        (b)     (c) 

Figure 2. Automatic Highlight recognition. (a) Original; (b) 
Recognized highlight pixels; (c) Extracted highlight sub-images. 

Figure 3. Highlight sub-image extraction. 
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4.2 Highlight Sub-image Resampling 
When the counterparts of a highlight sub-image are 

found, we could recalculate the color of its pixels to reduce 
highlight effect. This is completed by blending the 
appearance colors of pixel p0 and its corresponding pixels 
{pk | k=1…n}. 

The fact that we could take advantage of is: usually, 
due to the relative movement of the object and the light, 
most of the corresponding region of current sub-image is 
out of highlight area (Fig. 5). Based on this fact, we assume 
the majority of the appearance colors of {pk | k=0…n} are 
mainly distributed around the true diffuse color. Thus, when 
blending the colors, the pixel whose color deviates far from 
the others would be given small weight; On the contrary, 
those closer to the average color would be given larger 
weight. 

In fact, highlight could be represented and detected 
well enough in gray-scaled images, so we need only 
calculate the intensity level deviation of the pixels. That 
makes the calculation simpler. Let gk be the intensity level 
of pixel pk, and gavg be the average level of {pk | k=0…n}, 
that is: 
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where (Rk, Gk, Bk) is the color vector of pk. 
 

So far, we assume n reference images (besides the 
target image) are used in resampling and blending a pixel. 
These n images are selected from all reference images 
according to the angles between the viewing ray of current 
pixel and the rays of its corresponding pixels. Only the 
images with the smallest angles, i.e. the closest n images are 
used to fix the target pixel. 

Using a larger number of images will make the average 
color closer to the true color and help to filter out 
highlighted pixels. However, blending more pixel colors 
would also cause blurring effect, especially in the areas with 
complex texture.  

To get a globally better result, we adjust the value of n 
according to each sub-image’s own feature, i.e. the 
complexity of its texture.  

Assume the current sub-image is composed of m pixels, 
and each pixel has an intensity level of bi. Then the average 
intensity level is 
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and the deviation sum is 
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Then a given threshold τ determines the value of n: 
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When bdev is larger than the threshold, it means that the sub-
image has relatively more complex texture, and should be 
given a smaller n to prevent blurring; contrarily, when bdev 
is smaller than the threshold, the sub-image is simpler in 
texture, and should be given a larger n for smoother result. 

Experimental Results 
Applying the method described above, we can remove 

highlights from input images and get satisfying rendering 
results. A group of input data usually includes about 20 

  
Figure 5. The counterparts of a highlight sub-image. 

Figure 4. Finding the corresponding pixels of p0 in other 
reference images. 
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images, taken around the object by a common digital 
camera and under natural illumination. Obvious highlight 
spots exist in each image. 

Fig. 6 gives a group of experimental results of a red cup. 
There are 23 reference images used in total, and in sub-
image resampling, Nmin and Nmax are set to be 4 and 9 
respectively. Fig. 6(a) and (b) are two images from the 
sequence, the left part of each is the original image, and the 
small rectangles are automatically extracted highlight sub-
images; in the right, the pixels in the sub-images are 
blended with their corresponding pixels, and result in 
images without highlight spots. Fig. 6(c) shows the detail of 
an image before and after highlight removal. We can see 
that while the highlights are smoothly removed, the texture 
of the cup is well preserved.  

Another example of a white porcelain vase is given in 
Fig. 7. Note that the base color of the vase is so light that 
the contrast between the highlight spots and the vase is very 
weak. This would increase the difficulty to automatic 

highlight recognizing. In such case, applying more times of 
our algorithm to the image, or add interactive correction to 
the automatic selection will help to get better result. 

More highlight removal results are shown in the left 
part of Fig. 8. With these resampled reference images, we 
can run visual hull method again to render the object at new 
viewpoints. The new rendering results are free from 
highlights and are more realistic and precise in color (right 
of Fig. 8).  

Summary and Discussion 
In this paper, we proposed a new method to remove 

highlight spots in image-based visual hull rendering. It takes 
advantage of the features of IBVH, therefore can rapidly 
remove the highlights by resampling the highlight sub-
images from other reference images. Both of the recognition 
and the removal of highlight spots are automatic. 

In fact, the application of our method is not limited in 
highlight removal. It can also be used in image repairing. 
For instance, if in one of the reference images, the object 
was partially blocked by some obstacles, it could be easily 
recovered from other images with our method, by 
interactive sub-image selection (As shown in Fig. 9). 

Furthermore, highlight-free visual hulls would make it 
possible to change the illumination in the virtual 
environment, and re-light the object. All we need to do is 
re-calculating the diffuse and reflection color of the object 
according to the virtual lights. 

However, there are still some problems to be solved. 
As an image-based method, our method requires the 

input images to be calibrated in advance, and the highlight 
removal results are quite sensitive to the accuracy of 
calibration, especially when the size of input image is small. 

(a) 

(b) 

    
Before     After 

(c)  

Figure 6. The result of removing highlight spots by pixel blending. (a) & 
(b) are two images from a sequence. The left are the original images 
with extracted highlight sub-images; and the right are resampled image 
without highlight spots. (c) The texture of the object is well preserved 
after resampling. 

Figure 7. The experimental result of a white porcelain vase. The white 
base color makes it more difficult to automatically recognizing and 
removing  the highlight spots. 
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That is because incorrect correspondence of pixels would 
led to texture blurring. 

Another question is how to determine the thresholds in 
highlight recognition and sub-image resampling. In current 
experiments, they are set according to experience and 
statistical analysis. Self-adaptive thresholds would make the 
method more efficient and produce more accurate results. 

Finally, the calculation of the algorithm is not real-time 
so far. That will restrict the application of the method. Thus, 
improving the efficiency is also one of our future targets. 
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Figure 8. Visual hull rendering result without highlight. Top row: original reference images with highlight spots (left) and their rendering result 
(right); Bottom row: resampled reference images (left) and the new rendering result without highlights (right). 

     
Figure 9. The application of our method in image repairing. Left of each: original image with an obstacle blocking part of its texture; Right of 
each: obstacle removed with our method, by interactive selection. 
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