
1

Feature Line Smoothing and Adaptive Optimizing Method for 3D Models

Hao Jing*

and Bingfeng Zhou

 Institute of Computer Science and Technology, Peking University, Beijing , 100871，China

Abstract: Feature lines, especially view- and scale-
independent ridge-valley lines can indicate most prominent
characteristics on surface. Mathematically, ridge-valley
lines are defined as local extrema of principle curvatures
along corresponding principle directions. When detecting
ridge-valley lines on 3D mesh model, estimation of the
curvature and first even higher order curvature derivatives
is necessary. This may often yields to squiggly and noisy
result since the estimation is sensitive against unwanted
surface noises. We present an adaptive algorithm to obtain
smooth and noiseless ridge-valley lines based on graph
theory model. After an iteration procedure acting on local
ridge (or valley) vertices and their previous and next
neighbors on connected lines is applied to smooth feature
lines, each separate feature line is considered as an
undirected weighted graph which is called as Feature
Graph. With a correct root node choosing, the minimal
spanning tree of the feature graph is computed. We can
automatically get rid of most noises and preserve
meaningful feature lines through optimizing those minimal
spanning trees.

Keywords ： Feature Line ， Line Smoothing, Graph
Optimizing

1. Introduction

Lines are powerful shape descriptors which can convey
most information on 3D models for designer and artist.
Feature lines can be remarkably efficient at conveying
shape and meanwhile reducing visual clutter, especially in
the interactive design of entertainment and engineering
system. Feature lines extraction from discrete meshes has
become an hot area of intense research in recent decade [15]
[11][7][18][23]. In general, feature lines include Silhouette
Edges, Boundary Edges and Interior Feature Edges
[21]. Boundary edges only exist in non-closed surface
meshes. Detection of boundary edges is simple. we just
detect edges contained in only one triangle on triangle
models. For extraction of silhouette edges, many fast
extracting algorithms have been developed and can achieve

 Tel: +86-10-82529690; E-mail: jinghao@icst.pku.edu.cn

good results[15] [11] [7] [18].
Besides silhouette edges and boundary edges, interior

feature edges indicate the internal structure and details on
mesh at a finer level. In our method, we mainly deal with
interior feature edges as view- and scale- independent
ridge-valley lines, which are curves on a surface along
which the surface bends sharply. However, it is easy to
apply our algorithm to dealing with view-dependent feature
lines such as suggestive lines [3][20].

There have been various existing interior feature edges
detection algorithms [16][17][1][22][3][20]. All existing
feature line extraction methods, however, treated the noises
and meaningful feature lines of surface as the same role in
computing procedure, the algorithm we present can
reasonably separate noises from meaningful lines
automatically.

In our study, we first detect ridge and valley vertices via
curvature and curvature derivatives analysis, then connect
those vertices to generate feature lines. This may leads to
two visual clutters as left image of figure 1 shows. First,
The curvature based estimation may lead to much noises in
feature lines extracting results. Secondly, because we
connected the triangle vertices as feature lines, squiggly
lines may be produced. The left image of figure 2 shows
this situation.

Figure 1: A feature lines smoothing and optimizing
example of bunny model with 69k triangles. The left image
is the result before line smoothing and optimizing, squiggly
and noiseful lines can be seen. The right image is the result
after adaptive optimizing. Feature lines are smooth and
noiseless.

In our paper, we proposed an adaptive algorithm to

optimize feature lines results and to preserve meaningful
lines automatically. After obtaining the ridge and valley

2

vertices on mesh surface and connecting them, naturally, a
separate feature line can be treated as an undirected graph
weighted by the length of edges. All the extracted feature
lines on a 3D model can be viewed as a set of undirected
weighted graphs. We call these graphs as Feature Graphs.
For each feature graphs, a root node is chosen by a special
condition, then the minimal spanning tree and the longest
path of the tree is computed. After automatically
optimizing the minimal spanning tree through weight of
nodes on graph, we can wipe out noises, and obtain
meaningful feature lines as the right image of Figure 1
shows.

The contribution of our paper focus on providing a
reasonable and extendable scheme on how to divide noise
from meaningful feature lines automatically. In the
remaining of this paper, we will introduce previous work in
Section 2. In Section 3, the ridge-valley lines smoothing
algorithm will be given. Section 4describe the adaptive
optimizing algorithm used to wipe out noises. The
conclusions and more results are given in Section 5.

2. Previous Work

Various feature detection algorithms have been proposed
during the past decade, including ridge-valley lines
detection ([16][17][1] [22]) and suggestive feature lines
([3][4][20]). Earlier papers focus on extraction of
view-dependent silhouette edges ([11][7][18]), which
separate the visible part from invisible ones of mesh model,
i.e. edges shared by front-facing and back-facing polygons,
and can be detected fast in real time[15]. However, much
finer details are indicated by interior feature edges. Most of
existing algorithms on extracting interior feature edges
mainly focused on global feature detection via curvature
analysis. DeCarlo[3] defined interior feature edges as
view-dependent suggestive contour, which is extracted
through radial curvature[13] analysis. The authors
improved their algorithm in [4] with increasing of
detecting speed. Sousa and Prusinkiewicz[20] present
another automated algorithm to produce suggestive line
drawing, but their results are not satisfied when the method
is applied on some model, such as the bunny model. Other
authors define interior feature edges as view- and
scale-independent ridge-valley edges [16] [1], and extract
these lines via principle curvature analysis. The benefit of
using view- and scale-independent ridge-valley lines is that
they only need to be computed once, and are not necessary
to be recomputed each time the view point changed. In our
study, we focus on ridge-valley lines and mainly follow the
definition in [17].

Ohtake[17] proposed simple and effective method for
detecting ridge-valley lines defined via first- and

second-order curvature derivatives on meshes. The high
order surface derivative is achieved by combing multi-level
implicit surface fitting. The common drawbacks of these
curvature based algorithms are related with the
sensitiveness of both curvature and derivative estimations
against unwanted surface noise, and they do not make any
different from noises and meaningful feature lines.

Those approaches are based on global curvature analysis
may yield to squiggly and noisy feature lines. [10] present
a algorithm similar with the Laplacian scheme to obtain
feature lines on 3D modes. Researchers present a
modification of Laplacian smoothing algorithm to smooth
feature lines [8], but their scheme works on the entire mesh
before tracing feature lines. The algorithm we present in
Section 3 is also similar with Laplacian smoothing [19],
but works after detecting feature lines. Our algorithm can
pay more attention to the local property of extracted feature
lines and works well. Isenberg et al. [9] also present
image-space algorithm to detect and remove artifact such
as zigzag style. In their study, they use their own visibility
determination algorithm not the traditional hardware
z-buffer algorithm for the convenience of generating stroke.
The artifact they mentioned in their paper such as zigzag
lines is produced by their own visibility determination
algorithm, not from the original model. They didn’t
mention how to removal the noise like short branches
which comes from the original model and curvature
estimation error.

Some researchers on image processing focus on the
interactive feature detection method. e.g. [14] proposed a
method called geometric snakes which is an extension of
image snakes [12], [6] proposed an semi-automatic
algorithm to obtain smooth lines. But these interactive
methods are not fit for automatic 3D applications.

3. Achieving Smooth Feature Lines

In our study, we detect view- and scale- dependent
ridge-valley lines as interior feature edges. We estimate the
curvature first, and mainly follow the definition in [17] to
extract ridge-valley lines. Because the line is connected by
many ridge (or valley) vertices on the 3D model(figure 2
shows this situation), we get the result of squiggly
ridge-valley lines as the left image in Figure 3 shows.

After feature lines detected, we apply an iterative
procedure on ridge-valley lines as follow to smooth the
extracted feature lines. Our approach is similar with
laplacian smoothing which is inspired by normal based
mesh filtering [2], for each ridge vertex(or valley vertex) v


,

with its normal vector vn


, we find its two

neighbors prevv _


 and nextv _


 from the feature line.

3

If a vertex has only one neighbor on the feature line (the
start node or the end node of the line), or a vertex has more
than two neighbors on the feature line(the branch vertex),
we skip these vertices and don’t apply the iteration
operation on these vertices.

If the vertex have exactly two neighbors on the line, then
let the middle point between prevv _


 and nextv _



be 2/)__(_ nextvprevvmiddlev


 . The vector

from v


 to middlev _


 is vmiddlevv


 _ .

Define the difference of v


 on the line as equation 1.

vv nnvvv


)( (1)

The iterative procedure will move v


 to a new position

according to the difference v


 . After each iteration step,

the v


 should be updated with the new position of v


,

we use)0(v


 to represent the original position of vertex v


,

and)(nv


 to represent the new position of v


 after the nth

iteration. The updated v


 after the nth iteration is

represented by)(nv


 . The new position of the vertex v


is calculated by Eq.2

)1()1()(  nnn vvv
  (2)

Where λ is a controlling parameter which satisfies 0 <λ<
1. After applied Eq.2 on ridge (or valley) vertex, the
connected feature line can be smoother as the right image
of Figure 2 and 3 shows. For all of our experiments, λ= 0.4
proves to be a good choice, and the convergence can be
achieved after 20 iteration times.

Compared with Laplacian smoothing scheme[8] working
on the entire mesh, the proposed smoothing algorithm
concentrate more on the local property of feature lines and
is more direct and effective.

Figure 2: A feature lines smoothing example on part of
bunny model with 69k triangles. The left image shows the
result before line smoothing on the original triangle mesh,
squiggly lines exists. The right image is the result after
smoothing without squiggly lines with λ = 0.4 after 20
iterations, vertices are moved through smoothing algorithm
to obtain smooth lines.

4. Adaptive Optimizing Method of Feature
Lines

In our research, the key challenge is to distinguish these

Figure 3: A feature lines smoothing example of bunny
model with 69k triangles. The left image is the result
before line smoothing, squiggly lines exists. The right
image is the result after smoothing without squiggly lines
with λ = 0.4 after 20 iterations.

noises from meaningful feature lines. In this section, we
first build feature graph according to extracted feature line.
After building minimal spanning trees, we will describe the
automated algorithm to optimize these feature graphs in
two cases.

4.1 Build Feature Graph

For the feature lines extraction, each separate line can be

denoted as Gi =<Vi, Ei, Wi >, where Vi is the list of vertices,

Ei is the list of edges satisfying  2VE  , Wi is the weight

function of Ei, in which ik Ww  is weight of ik Ee  .

In each graph Gi, the number of vertex is more than 2. we
used the length of edge as weight in our study. Naturally,
Gi is an undirected weighted graph. We call Gi as Feature
Graph. Furthermore, by construction, a Feature Graph is
also a connected graph [5]. The extracted feature lines can
be represented by a set of Feature Graph G_set =<G0,
G1 ,…, Gm >, each setGGi _ correspond a separate

feature line segment. We develop denoising algorithm
through optimizing each setGGi _ .

4.2 Optimizing Each Feature Graph

For each setGGi _ , we computed the longest path P,

with length L. Since feature graph Gi is a connected graph,
it certainly contains a spanning tree. We build the Minimal
Spanning Tree of Gi using the start node or the end node
of the longest path as the root of tree.

Computed the Longest Path: Follow the definition of
path in graph theory [5], a path is a non-empty graph
P =<V, E> of the form

kkk xxxxxxExxxV 1211010 ,...,,,,...,, 

where the xi are all distinct. Here we refer the Longest
Path as the path

ij GP  with the maximal sum of edge

weight in P of all paths in graph Gi. In our study, the edge

4

weight is the length of the edge. Mathematically, a path Pj

is the longest path in the graph Gi if and only if

  kGPPEe w
ijjk),(is the maximum, e.g.

},...,,max{)()()(10   kPEekPEekPEe www
nkkk

Since we use the length of edge as weight, the Longest
Path visually is the longest line branch in a separate feature
line. Figure 4 shows three different situations during
computing, for each branch vertex t in a tree, the length
from the root to the vertex t is Lt_root , length of the two
longest low level branch of vertex t is Lt1 and Lt2 , then the
longest path Lt_max crossing the vertex t is max{Lt_root +Lt1 ,
Lt_root +Lt2 ,Lt1 +Lt2}. The longest path of tree T should be
max{Lv0,Lv1,…, Lvn}; (v0,v1,…,vn  V(T)).

Figure 4: Example of three situations of the longest path
computation. blue vertex is the root node of tree, and red
path is the longest path of tree

To compute the longest path, we randomly chose a

vertex in graph as root, then build the minimal spanning
tree of the graph with PRIM [5] algorithm. The left image
of Figure 5 shows the random root choosing result. We
compute the longest path in the tree, which is also the
longest path in graph Gi.

Figure 5: Example of choosing root of Minimal Spanning.
The red points are roots of MSTs. In the left image, we
choose a vertex randomly as the MST’s root to build the
first MST T1. Then we choose root as the start node(or the
end node) of the longest path in T1, rebuild the MST T2 as
the right image shows.

After finding out the longest path in the minimal

spanning tree builded first time, we choose the start node
or the end node as root node, and then we rebuild the
minimal spanning tree of graph Gi. The right image of
figure 5 shows the result of choosing start node or the end

node as root node after computing the longest path.
Finishing rebuilding minimal spanning tree of each feature
graph, we optimize these trees to wipe out noises. Let Pi be
the longest path of feature graph Gi, the length Li of path Pi

can be denoted as

  kPiEek wLi)(

A global threshold θ and local threshold ε are proposed
to distinguish noises from meaningful feature. For each G,
θ satisfies:

},...,,max{},...,,min{ 1010 mm LLLLLL 

and ε satisfies:

10  
We delete noises on extracted lines in the following two

cases.
CASE I: If the length Li of the longest path of feature

graph Gi satisfies Li <θ, the feature line corresponded
feature graph Gi is considered as noise and not rendered.

CASE II: In this case, first we set a split parameter Nsplit

which is a positive integer:
},...,,{/},...,,max{ 1010 mmsplit LLLaverageLLLN 

Giving a feature graph GG_set with its rebounded
minimal spanning tree T, if its longest path L satisfies

L>average },...,,{ 10 mLLL , we separate the longest path

of G to Nsplit parts. Then the original set of feature graph
G_set =< G0, G1, …, Gm > becomes a new set of feature
graph G_set’ =< G0, G1, …, Gm’ >. While separating, we
ensure the vertex number of each graph is more than one;
otherwise the only vertex of this graph would join the
neighbor graph. The reason why we split feature graph is
that we can preserve much more details when optimizing
feature lines after splitting feature graphs. Figure 6 shows
comparison between optimizing result with splitting and
optimizing result without splitting, details on the eye part
of the bunny model are preserve well.

Giving a feature graph GG_set’ after splitting with its
minimal spanning tree T. The longest path P with length L
has been found. For each node viT, the longest path li
among all paths from the node to all leaf nodes is
computed. We first check each branch node vkP in the

Figure 6: Comparison between optimizing result with
splitting (right image) and optimizing result without
splitting (left image). details on the eye part of the bunny
model are preserve well.

5

longest path which has more than one child node. For
branches belongs to the longest path of tree, if length of
one of other branches lbranch<ε*L, the branch is considered
as noises and deleted. On the contrast, if length of one of
other branches lbranch >ε*L, we apply same checking step
on the subtree T’ with the branch node being the root of T’.
This optimizing case can be implemented by a recursive
procedure.
Implementation of CASE II: CASE I is easy to
implement. Implementation of CASE II is a little difficult.
We implement the CASE II through a recursive function as
follows. For each feature graph GG_set’:

CHECK-ALL-BRANCH (GraphVertexIndex root)
for all vertex v in the longest path P

for all branch b of vertex V
if lv:b < lroot*ε

CUT-BRANCH(v, b)
else

CHECK-ALL-BRANCH(v, b)
end if

end for
end for
After optimizing G_set through θ and optimizing G_set’

through ε. For vertex v in a 3D model, we render the vertex
if v satisfies both of the following two conditions.

1. v belongs feature graph set G_set which is before
splitting and v is meaningful node through optimizing
procedure with θ.

2. v belongs feature graph set G_set’ which is after
splitting and v is meaningful node through optimizing
procedure with ε.

4.3 Compute thresholds θ and ε automatically

In our adaptive algorithm, these two thresholds q and e

are computed automatically. In this section, we describe
the rules to compute thresholds automatically.

For each feature graph GiG_set, Li is the longest path
of Gi which is computed in section 4.2, θ is calculated as
follows:

},...,,{ 10 mLLLaverage

The computation of ε is much complicated than the
computation of θ. For each branch node
{vbranch1 ,vbranch2,…,vbranchn} in feature graph GiG_set’,
we compute the longest path {Lbranch1 ,Lbranch2,…,Lbranchn}
of subtrees with each branch node being the root. We set
level value for each node. The level value of each node in
the longest path of feature graph Gi is 0. For each branch
node in the longest path, the level value of nodes in the
longest path of subtree with the branch node being the root
is the level value of branch node plus 1, as figure 7 shows.

Figure 7: example of setting level value of nodes on tree

For each nodes ,vbranchi {vbranch1,vbranch2,…,vbranchn},

we compute ebranchi as follows:
uplevelibranchibranchi LLe /

We denote Lbranchi as the longest path of the subtree with
vbranchi being the root, levelbranchi as the level value of
vbranchi, Lupleveli as the length of path which satisfies two
condition. First, the path should passes vbranchi , secondly,
the level value of nodes on the path should be levelbranchi .

},...,,{ 21 branchnbranchbranchi average  

For each GiG_set’, },...,,{ 21 ni average  

Here θ and ε have been computed automatically.

5. Results and Conclusions

Feature lines carry essential information about the
geometry of a surface. Existing feature line extraction
method can not work perfect because of the computational
error during curvature analysis on discrete mesh models.
The methods we proposed in this paper can not only
smooth lines extracted through curvature analysis, but also
provide a reasonable scheme to distinguish noise from
meaningful feature lines. Our method works well on
various models and can obtain high quality feature line
result. So we call our method as adaptive optimizing
method. Figure 8 and 9 give two examples and the
comparison with existing method [4].

Although we mainly focus on the view-independent
feature lines, it’s also easy to apply our algorithm to deal
with view-dependent lines such as suggestive lines [3][20].
But the computational time may increase. For view- and
scale- independent ridge-valley lines optimization, we need
to build feature graphs only once. But for view-dependent
lines, different line-drawing result corresponds to different
viewpoint. Each time the viewpoint changed, the feature
graphs need to be re-generated and the computational time
increases much. In future works, more efficient algorithm
dealing with view-dependent lines should be developed.

References

[1] Alexander Belyaev, Yutaka Ohtake, and Kasumi Abe.
Detection of ridges and ravines on range images and
triangular meshes. In Proceedings of Vision Geometry IX.
SPIE, 2000.

6

Fig. 7. Example of feature lines optimizing. Left image is
the optimizing result. Middle image is rendered with both
optimized lines and silhouette edges. Right image is
rendered using the algorithm [3].

Figure 9: Example of feature lines optimizing. Left image
is the optimizing result with ridge-valley lines and
silhouette edges with our adaptive optimizing algorithm.
Right image is rendered using the algorithm [3].

triangular meshes. In Proceedings of Vision Geometry IX.
SPIE, 2000.
[2] Chun Yen Chen and Kuo Young Cheng. A sharpeness
dependent filter for mesh smoothing. Computer Aided
Geometric Design, 22:376–391, 2005.
[3] Doug DeCarlo, Adam Finkelstein, Szymon
Rusinkicwicz, and Anthony Santella. Suggestive contours
for conveying shape. ACM Transactions on Graphics,
22(3(July)):848–855, 2003.
[4] Doug DeCarlo, Adam Finkelstein, and Szymon
Rusinkiewicz. Interactive rendering of suggestive contours
with temporal coherence. In NPAR 2004. ACM, 2004.
[5] Reinhard Diestel. Graph Theory. Springer-Verlag,
2000.
[6] Yanwen Guo, Qunsheng Peng, Guofei Hu, and Jin
Wang. Smooth feature line detection for meshes. The
Journal of Zhejiang University SCIENCE, 6A(5):460–468,
2005.
[7] Aaron Hertzmann and Denis Zorin. Illustrating smooth
surface. In Proceedings of SIGGRAPH 2000. ACM, 2000.
[8] Klaus Hildebrandt, Konrad Polthier, and Max
Wardetzky. Smooth feature lines on surface meshes. In
Eurographics Symposium on Geometry Processing, 2005.

[9] Tobias Isenberg, Nick Halper, and Thomas Strothotte.
Stylizing silhouettes at interactive rates: From silhouette
edges to silhouette strokes. In Proceedings of
EUROGRAPHICS 2002, 2002.
[10] Hao Jing and Bingfeng Zhou. A 3d model feature-line
extraction method using mesh sharpening. Lecture Notes in
Computer Science 3942, pages 840–848, 2006.
[11] Robert D. Kalnins, Lee Markosian, Barbara J. Meier,
Michael A. Kowalski, and Joseph C. Lee. Wysiwyg npr:
Drawing strokes directly on 3d models. In Proceedings of
SIGGRAPH 2002. ACM, 2002.
[12] Michael Kass, Andrew Witkin, and Demetri
Terzopoulos. Snakes: Active contour models. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(11):1260–1265, 1998.
[13] Jan Koenderink. What does the occluding contour. tell
us about solid shape? Perception, 13:321–330, 1984.
[14] Yunjin Lee and Seungyong Lee. Geometric snakes for
triangular meshes. In Proceedings of Eurographics 2002,
pages 229–238, 2002.
[15] Lee Markosian, Michael A. Kowalski, Samuel J.
Trychin, and Lubomir D. Bourdev. Real-time
nonphotorealistic rendering. In Proceedings of SIGGRAPH
1997. ACM, 1997.
[16] Yutaka Ohtake and Alexander Belyaev. Automatic
detection of geodesic ridges and ravines on polygonal
surfaces. The Journal of Three Dimensional Images,
15(1):127–132, 2001.
[17] Yutaka Ohtake and Alexander Belyaev. Ridge-valley
lines on meshes via implicit surface fitting. In Proceedings
of SIGGRAPH 2004. ACM, 2004.
[18] Ramesh Raskar and Michael Cohen. Image precision
silhouette edges. In Symposium on Interactive 3D Graphics
1999. ACM, 1999.
[19] Olga Sorkine. Laplacian mesh processing. In
Proceedings of Eurographics 2005. ACM, 2005.
[20] Mario Costa Sousa and Przemyslaw Prusinkiewicz. A
few good lines: Suggestive drawing of 3d models.
Computer Graphics Forum, 22(3):381–390, 2003.

