
1 

 
 

Feature Line Smoothing and Adaptive Optimizing Method for 3D Models 
 

Hao Jing*
 

and Bingfeng Zhou
 
 

 Institute of Computer Science and Technology, Peking University, Beijing , 100871，China 
 

Abstract: Feature lines, especially view- and scale- 
independent ridge-valley lines can indicate most prominent 
characteristics on surface. Mathematically, ridge-valley 
lines are defined as local extrema of principle curvatures 
along corresponding principle directions. When detecting 
ridge-valley lines on 3D mesh model, estimation of the 
curvature and first even higher order curvature derivatives 
is necessary. This may often yields to squiggly and noisy 
result since the estimation is sensitive against unwanted 
surface noises. We present an adaptive algorithm to obtain 
smooth and noiseless ridge-valley lines based on graph 
theory model. After an iteration procedure acting on local 
ridge (or valley) vertices and their previous and next 
neighbors on connected lines is applied to smooth feature 
lines, each separate feature line is considered as an 
undirected weighted graph which is called as Feature 
Graph. With a correct root node choosing, the minimal 
spanning tree of the feature graph is computed. We can 
automatically get rid of most noises and preserve 
meaningful feature lines through optimizing those minimal 
spanning trees. 
 
Keywords ： Feature Line ， Line Smoothing, Graph 
Optimizing 
 

1. Introduction 
 

Lines are powerful shape descriptors which can convey 
most information on 3D models for designer and artist. 
Feature lines can be remarkably efficient at conveying 
shape and meanwhile reducing visual clutter, especially in 
the interactive design of entertainment and engineering 
system. Feature lines extraction from discrete meshes has 
become an hot area of intense research in recent decade [15] 
[11][7][18][23]. In general, feature lines include Silhouette 
Edges, Boundary Edges and Interior Feature Edges 
[21]. Boundary edges only exist in non-closed surface 
meshes. Detection of boundary edges is simple. we just 
detect edges contained in only one triangle on triangle 
models. For extraction of silhouette edges, many fast 
extracting algorithms have been developed and can achieve 
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good results[15] [11] [7] [18]. 
Besides silhouette edges and boundary edges, interior 

feature edges indicate the internal structure and details on 
mesh at a finer level. In our method, we mainly deal with 
interior feature edges as view- and scale- independent 
ridge-valley lines, which are curves on a surface along 
which the surface bends sharply. However, it is easy to 
apply our algorithm to dealing with view-dependent feature 
lines such as suggestive lines [3][20]. 

There have been various existing interior feature edges 
detection algorithms [16][17][1][22][3][20]. All existing 
feature line extraction methods, however, treated the noises 
and meaningful feature lines of surface as the same role in 
computing procedure, the algorithm we present can 
reasonably separate noises from meaningful lines 
automatically. 

In our study, we first detect ridge and valley vertices via 
curvature and curvature derivatives analysis, then connect 
those vertices to generate feature lines. This may leads to 
two visual clutters as left image of figure 1 shows. First, 
The curvature based estimation may lead to much noises in 
feature lines extracting results. Secondly, because we 
connected the triangle vertices as feature lines, squiggly 
lines may be produced. The left image of figure 2 shows 
this situation. 

Figure 1: A feature lines smoothing and optimizing 
example of bunny model with 69k triangles. The left image 
is the result before line smoothing and optimizing, squiggly 
and noiseful lines can be seen. The right image is the result 
after adaptive optimizing. Feature lines are smooth and 
noiseless. 

 
In our paper, we proposed an adaptive algorithm to 

optimize feature lines results and to preserve meaningful 
lines automatically. After obtaining the ridge and valley 
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vertices on mesh surface and connecting them, naturally, a 
separate feature line can be treated as an undirected graph 
weighted by the length of edges. All the extracted feature 
lines on a 3D model can be viewed as a set of undirected 
weighted graphs. We call these graphs as Feature Graphs. 
For each feature graphs, a root node is chosen by a special 
condition, then the minimal spanning tree and the longest 
path of the tree is computed. After automatically 
optimizing the minimal spanning tree through weight of 
nodes on graph, we can wipe out noises, and obtain 
meaningful feature lines as the right image of Figure 1 
shows. 

The contribution of our paper focus on providing a 
reasonable and extendable scheme on how to divide noise 
from meaningful feature lines automatically. In the 
remaining of this paper, we will introduce previous work in 
Section 2. In Section 3, the ridge-valley lines smoothing 
algorithm will be given. Section 4describe the adaptive 
optimizing algorithm used to wipe out noises. The 
conclusions and more results are given in Section 5. 

 
2. Previous Work  
 

Various feature detection algorithms have been proposed 
during the past decade, including ridge-valley lines 
detection ([16][17][1] [22]) and suggestive feature lines 
([3][4][20]). Earlier papers focus on extraction of 
view-dependent silhouette edges ([11][7][18]), which 
separate the visible part from invisible ones of mesh model, 
i.e. edges shared by front-facing and back-facing polygons, 
and can be detected fast in real time[15]. However, much 
finer details are indicated by interior feature edges. Most of 
existing algorithms on extracting interior feature edges 
mainly focused on global feature detection via curvature 
analysis. DeCarlo[3] defined interior feature edges as 
view-dependent suggestive contour, which is extracted 
through radial curvature[13] analysis. The authors 
improved their algorithm in [4] with increasing of 
detecting speed. Sousa and Prusinkiewicz[20] present 
another automated algorithm to produce suggestive line 
drawing, but their results are not satisfied when the method 
is applied on some model, such as the bunny model. Other 
authors define interior feature edges as view- and 
scale-independent ridge-valley edges [16] [1], and extract 
these lines via principle curvature analysis. The benefit of 
using view- and scale-independent ridge-valley lines is that 
they only need to be computed once, and are not necessary 
to be recomputed each time the view point changed. In our 
study, we focus on ridge-valley lines and mainly follow the 
definition in [17]. 

Ohtake[17] proposed simple and effective method for 
detecting ridge-valley lines defined via first- and 

second-order curvature derivatives on meshes. The high 
order surface derivative is achieved by combing multi-level 
implicit surface fitting. The common drawbacks of these 
curvature based algorithms are related with the 
sensitiveness of both curvature and derivative estimations 
against unwanted surface noise, and they do not make any 
different from noises and meaningful feature lines. 

Those approaches are based on global curvature analysis 
may yield to squiggly and noisy feature lines. [10] present 
a algorithm similar with the Laplacian scheme to obtain 
feature lines on 3D modes. Researchers present a 
modification of Laplacian smoothing algorithm to smooth 
feature lines [8], but their scheme works on the entire mesh 
before tracing feature lines. The algorithm we present in 
Section 3 is also similar with Laplacian smoothing [19], 
but works after detecting feature lines. Our algorithm can 
pay more attention to the local property of extracted feature 
lines and works well. Isenberg et al. [9] also present 
image-space algorithm to detect and remove artifact such 
as zigzag style. In their study, they use their own visibility 
determination algorithm not the traditional hardware 
z-buffer algorithm for the convenience of generating stroke. 
The artifact they mentioned in their paper such as zigzag 
lines is produced by their own visibility determination 
algorithm, not from the original model. They didn’t 
mention how to removal the noise like short branches 
which comes from the original model and curvature 
estimation error. 

Some researchers on image processing focus on the 
interactive feature detection method. e.g. [14] proposed a 
method called geometric snakes which is an extension of 
image snakes [12], [6] proposed an semi-automatic 
algorithm to obtain smooth lines. But these interactive 
methods are not fit for automatic 3D applications. 
 
3. Achieving Smooth Feature Lines 
 

In our study, we detect view- and scale- dependent 
ridge-valley lines as interior feature edges. We estimate the 
curvature first, and mainly follow the definition in [17] to 
extract ridge-valley lines. Because the line is connected by 
many ridge (or valley) vertices on the 3D model(figure 2 
shows this situation), we get the result of squiggly 
ridge-valley lines as the left image in Figure 3 shows. 

After feature lines detected, we apply an iterative 
procedure on ridge-valley lines as follow to smooth the 
extracted feature lines. Our approach is similar with 
laplacian smoothing which is inspired by normal based 
mesh filtering [2], for each ridge vertex(or valley vertex) v


, 

with its normal vector vn


, we find its two 

neighbors prevv _


 and nextv _


 from the feature line. 
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If a vertex has only one neighbor on the feature line (the 
start node or the end node of the line), or a vertex has more 
than two neighbors on the feature line(the branch vertex), 
we skip these vertices and don’t apply the iteration 
operation on these vertices. 

If the vertex have exactly two neighbors on the line, then 
let the middle point between prevv _


 and nextv _


 

be 2/)__(_ nextvprevvmiddlev


 . The vector 

from v


 to middlev _


 is vmiddlevv


 _ . 

Define the difference of v


 on the line as equation 1. 

vv nnvvv


)(                          (1) 

The iterative procedure will move v


 to a new position 

according to the difference v


 . After each iteration step, 

the v


  should be updated with the new position of v


, 

we use )0(v


 to represent the original position of vertex v


, 

and )(nv


 to represent the new position of v


 after the nth 

iteration. The updated v


  after the nth iteration is 

represented by )(nv


 . The new position of the vertex v


 

is calculated by Eq.2 

)1()1()(   nnn vvv
                         (2) 

Where λ is a controlling parameter which satisfies 0 <λ< 
1. After applied Eq.2 on ridge (or valley) vertex, the 
connected feature line can be smoother as the right image 
of Figure 2 and 3 shows. For all of our experiments, λ= 0.4 
proves to be a good choice, and the convergence can be 
achieved after 20 iteration times. 

Compared with Laplacian smoothing scheme[8] working 
on the entire mesh, the proposed smoothing algorithm 
concentrate more on the local property of feature lines and 
is more direct and effective. 

Figure 2: A feature lines smoothing example on part of 
bunny model with 69k triangles. The left image shows the 
result before line smoothing on the original triangle mesh, 
squiggly lines exists. The right image is the result after 
smoothing without squiggly lines with λ = 0.4 after 20 
iterations, vertices are moved through smoothing algorithm
to obtain smooth lines. 

 
4. Adaptive Optimizing Method of Feature 
Lines  

 
In our research, the key challenge is to distinguish these 

Figure 3: A feature lines smoothing example of bunny 
model with 69k triangles. The left image is the result 
before line smoothing, squiggly lines exists. The right 
image is the result after smoothing without squiggly lines 
with λ = 0.4 after 20 iterations. 

 
noises from meaningful feature lines. In this section, we 
first build feature graph according to extracted feature line. 
After building minimal spanning trees, we will describe the 
automated algorithm to optimize these feature graphs in 
two cases. 

 
4.1 Build Feature Graph 

 
For the feature lines extraction, each separate line can be 

denoted as Gi =<Vi, Ei, Wi >, where Vi is the list of vertices, 

Ei is the list of edges satisfying  2VE  , Wi is the weight 

function of Ei, in which ik Ww   is weight of ik Ee  . 

In each graph Gi, the number of vertex is more than 2. we 
used the length of edge as weight in our study. Naturally, 
Gi is an undirected weighted graph. We call Gi as Feature 
Graph. Furthermore, by construction, a Feature Graph is 
also a connected graph [5]. The extracted feature lines can 
be represented by a set of Feature Graph G_set =<G0, 
G1 ,…, Gm >, each setGGi _  correspond a separate 

feature line segment. We develop denoising algorithm 
through optimizing each setGGi _ . 

 
4.2 Optimizing Each Feature Graph 
 

For each setGGi _ , we computed the longest path P, 

with length L. Since feature graph Gi is a connected graph, 
it certainly contains a spanning tree. We build the Minimal 
Spanning Tree of Gi using the start node or the end node 
of the longest path as the root of tree. 

Computed the Longest Path: Follow the definition of 
path in graph theory [5], a path is a non-empty graph  
P =<V, E> of the form 

kkk xxxxxxExxxV 1211010 ,...,,,,...,,   

where the xi are all distinct. Here we refer the Longest 
Path as the path 

ij GP    with the maximal sum of edge 

weight in P of all paths in graph Gi. In our study, the edge 
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weight is the length of the edge. Mathematically, a path Pj 

is the longest path in the graph Gi if and only if 

  kGPPEe w
ijjk ),(  is the maximum, e.g. 

},...,,max{ )()()( 10   kPEekPEekPEe www
nkkk

 

Since we use the length of edge as weight, the Longest 
Path visually is the longest line branch in a separate feature 
line. Figure 4 shows three different situations during 
computing, for each branch vertex t in a tree, the length 
from the root to the vertex t is Lt_root , length of the two 
longest low level branch of vertex t is Lt1 and Lt2 , then the 
longest path Lt_max crossing the vertex t is max{Lt_root +Lt1 , 
Lt_root +Lt2 ,Lt1 +Lt2}. The longest path of tree T should be 
max{Lv0,Lv1,…, Lvn}; (v0,v1,…,vn   V(T)). 

Figure 4: Example of three situations of the longest path 
computation. blue vertex is the root node of tree, and red 
path is the longest path of tree 

 
To compute the longest path, we randomly chose a 

vertex in graph as root, then build the minimal spanning 
tree of the graph with PRIM [5] algorithm. The left image 
of Figure 5 shows the random root choosing result. We 
compute the longest path in the tree, which is also the 
longest path in graph Gi. 

Figure 5: Example of choosing root of Minimal Spanning. 
The red points are roots of MSTs. In the left image, we 
choose a vertex randomly as the MST’s root to build the 
first MST T1. Then we choose root as the start node(or the 
end node) of the longest path in T1, rebuild the MST T2 as 
the right image shows.  

 
After finding out the longest path in the minimal 

spanning tree builded first time, we choose the start node 
or the end node as root node, and then we rebuild the 
minimal spanning tree of graph Gi. The right image of 
figure 5 shows the result of choosing start node or the end 

node as root node after computing the longest path. 
Finishing rebuilding minimal spanning tree of each feature 
graph, we optimize these trees to wipe out noises. Let Pi be 
the longest path of feature graph Gi, the length Li of path Pi 

can be denoted as 

  kPiEek wLi )(  

A global threshold θ and local threshold ε are proposed 
to distinguish noises from meaningful feature. For each G, 
θ satisfies: 

},...,,max{},...,,min{ 1010 mm LLLLLL   

and ε satisfies: 

10    
We delete noises on extracted lines in the following two 

cases. 
CASE I: If the length Li of the longest path of feature 

graph Gi satisfies Li <θ, the feature line corresponded 
feature graph Gi is considered as noise and not rendered. 

CASE II: In this case, first we set a split parameter Nsplit 

which is a positive integer: 
},...,,{/},...,,max{ 1010 mmsplit LLLaverageLLLN   

Giving a feature graph GG_set with its rebounded 
minimal spanning tree T, if its longest path L satisfies 

L>average },...,,{ 10 mLLL , we separate the longest path 

of G to Nsplit  parts. Then the original set of feature graph 
G_set =< G0, G1, …, Gm > becomes a new set of feature 
graph G_set’ =< G0, G1, …, Gm’ >. While separating, we 
ensure the vertex number of each graph is more than one; 
otherwise the only vertex of this graph would join the 
neighbor graph. The reason why we split feature graph is 
that we can preserve much more details when optimizing 
feature lines after splitting feature graphs. Figure 6 shows 
comparison between optimizing result with splitting and 
optimizing result without splitting, details on the eye part 
of the bunny model are preserve well. 

Giving a feature graph GG_set’ after splitting with its 
minimal spanning tree T. The longest path P with length L 
has been found. For each node viT, the longest path li 
among all paths from the node to all leaf nodes is 
computed. We first check each branch node vkP in the  

Figure 6: Comparison between optimizing result with 
splitting (right image) and optimizing result without 
splitting (left image). details on the eye part of the bunny 
model are preserve well. 
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longest path which has more than one child node. For 
branches belongs to the longest path of tree, if length of 
one of other branches lbranch<ε*L, the branch is considered 
as noises and deleted. On the contrast, if length of one of 
other branches lbranch >ε*L, we apply same checking step 
on the subtree T’ with the branch node being the root of T’. 
This optimizing case can be implemented by a recursive 
procedure. 
Implementation of CASE II: CASE I is easy to 
implement. Implementation of CASE II is a little difficult. 
We implement the CASE II through a recursive function as 
follows. For each feature graph GG_set’: 

CHECK-ALL-BRANCH (GraphVertexIndex root) 
for all vertex v in the longest path P 

for all branch b of vertex V 
if lv:b < lroot*ε 

CUT-BRANCH(v, b) 
else 

CHECK-ALL-BRANCH(v, b) 
end if 

end for 
end for 
After optimizing G_set through θ and optimizing G_set’ 

through ε. For vertex v in a 3D model, we render the vertex 
if v satisfies both of the following two conditions. 

1. v belongs feature graph set G_set which is before 
splitting and v is meaningful node through optimizing 
procedure with θ. 

2. v belongs feature graph set G_set’ which is after 
splitting and v is meaningful node through optimizing 
procedure with ε. 

 
4.3 Compute thresholds θ and ε automatically 

 
In our adaptive algorithm, these two thresholds q and e 

are computed automatically. In this section, we describe 
the rules to compute thresholds automatically. 

For each feature graph GiG_set, Li is the longest path 
of Gi which is computed in section 4.2, θ is calculated as 
follows: 

},...,,{ 10 mLLLaverage  

The computation of ε is much complicated than the 
computation of θ. For each branch node 
{vbranch1 ,vbranch2,…,vbranchn} in feature graph GiG_set’, 
we compute the longest path {Lbranch1 ,Lbranch2,…,Lbranchn} 
of subtrees with each branch node being the root. We set 
level value for each node. The level value of each node in 
the longest path of feature graph Gi is 0. For each branch 
node in the longest path, the level value of nodes in the 
longest path of subtree with the branch node being the root 
is the level value of branch node plus 1, as figure 7 shows. 

Figure 7: example of setting level value of nodes on tree 
 
For each nodes ,vbranchi {vbranch1,vbranch2,…,vbranchn}, 

we compute ebranchi as follows: 
uplevelibranchibranchi LLe /  

We denote Lbranchi as the longest path of the subtree with 
vbranchi being the root, levelbranchi as the level value of 
vbranchi, Lupleveli as the length of path which satisfies two 
condition. First, the path should passes vbranchi , secondly, 
the level value of nodes on the path should be levelbranchi . 

},...,,{ 21 branchnbranchbranchi average    

For each GiG_set’, },...,,{ 21 ni average    

Here θ and ε have been computed automatically. 
 

5. Results and Conclusions 
 

Feature lines carry essential information about the 
geometry of a surface. Existing feature line extraction 
method can not work perfect because of the computational 
error during curvature analysis on discrete mesh models. 
The methods we proposed in this paper can not only 
smooth lines extracted through curvature analysis, but also 
provide a reasonable scheme to distinguish noise from 
meaningful feature lines. Our method works well on 
various models and can obtain high quality feature line 
result. So we call our method as adaptive optimizing 
method. Figure 8 and 9 give two examples and the 
comparison with existing method [4]. 

Although we mainly focus on the view-independent 
feature lines, it’s also easy to apply our algorithm to deal 
with view-dependent lines such as suggestive lines [3][20]. 
But the computational time may increase. For view- and 
scale- independent ridge-valley lines optimization, we need 
to build feature graphs only once. But for view-dependent 
lines, different line-drawing result corresponds to different 
viewpoint. Each time the viewpoint changed, the feature 
graphs need to be re-generated and the computational time 
increases much. In future works, more efficient algorithm 
dealing with view-dependent lines should be developed. 
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