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ABSTRACT
Nowadays, the interest of real-time video streaming reaches a peak.
To deal with the problem of packet loss and optimize users’ Qual-
ity of Experience (QoE), Forward error correction (FEC) has been
studied and applied extensively. The performance of FEC depends
on whether the future loss pattern is precisely predicted, while the
previous works have not provided a robust packet loss prediction
method. In this work, we propose LightFEC to make accurate and
fast prediction of packet loss pattern. By applying long short-term
memory (LSTM) networks, clustering algorithms and model com-
pression methods, LightFEC is able to accurately predict packet
loss in various network conditions without consuming too much
time. According to the results of well-designed experiments, we
find out that LightFEC outperforms other schemes on prediction
accuracy, which improves the packet recovery ratio while keeping
the redundancy ratio at a low level.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Network performance analysis; • Computing methodolo-
gies → Machine learning approaches.

KEYWORDS
Packet Loss Prediction, Deep Learning, Network-adaptive Stream-
ing, Long Short-term Memory (LSTM) Network
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1 INTRODUCTION
In recent years, with real-time video streaming getting more and
more prevalent, the problem of packet loss becomes more serious
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Figure 1: The diagram of a scheme using adaptive FEC. It
generates redundant packets according to the source media
packets and loss feedback for making correction.

and intolerable as well. Network video streaming is expected to
account for 82% of Internet traffic by 2022, and a growing share
of network video will take the form of live streaming video [8].
However, packet loss is proved to be a critical problem. Packet
loss occurs when one or more packets of data traveling across a
computer network fail to reach their destination. When network
conditions are terrible, packet loss may happen frequently, causing
crackling noise and jitters, thus degrading users’ Quality of Experi-
ence (QoE) [5, 9, 20]. Some complex protocols such as Transmission
Control Protocol (TCP) have their own error correctionmechanisms
to avoid packet loss and provide error-checked streaming, but they
may not satisfy the demand of low latency. For instance, Automatic
Repeat-reQuest (ARQ) is a traditional error correction method, but
its recovery delay is longer than a round trip time (RTT). Therefore,
the methods like ARQ are not appropriate choices for Real-Time
Communication (RTC), which has strict requirements on delay.

Forward error correction (FEC) is a widely acknowledged tech-
nique for controlling errors in data transmission over unreliable or
noisy communication channels [21, 25, 28], but the existing FEC
methods still have shortcomings. By encoding in a redundant way,
the sender generates extra packets according to the source. When
packet loss happens, the redundant packets allow the receiver to
detect the errors and correct themwithout retransmission. With the
redundant packets generated according to the source data, packet
loss can be avoided to some extent. Nevertheless, the performance
of FEC usually depends on the numbers of lost and redundant pack-
ets. If the redundant packets are far less than the lost ones, the
receiver will be unable to correct them [23, 29, 31]. And if there
are too many redundant packets, it wastes the available bandwidth
while improving the redundancy ratio. As a result, an accurate
forecast of packet loss can optimize the performance of FEC.

To improve the recovery ratio while reducing the redundancy
ratio, adaptive FEC methods have been suggested to dynamically
generate redundant packets according to the packet loss feedback
information, however, they are still not so satisfactory. Figure 1 is
the diagram of a typical adaptive FEC algorithm. It changes the
coding strategy judging by the loss feedback from the RTC receiver.
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(a) Fix-RS (b) Adaptive-FEC

Figure 2: The packet loss rate predictions of the two traditional algorithms. The red dots means that the source packets cannot
be completely recovered at that step, while the blue dots are the opposite.

Unfortunately, most of the FEC algorithms are not powerful enough,
mainly because of these two shortcomings:

• Static models. It is normal to think that the incoming pack-
ets will emerge the same or at least a similar pattern as the
historical ones, but it is not always the case [2, 26]. As a
matter of fact, the network conditions change with time and
the state of network may fluctuate frequently, which deeply
affects the packet loss patterns [1, 10, 11]. Therefore, it is
unwise to make predictions for packet loss just with a static
model, which could result in intolerable mistakes.

• Simple algorithms. Even if when the network is relatively
stable, the relation between future and historical packet loss
pattern is not as simple as just sharing the same loss rate.
The traditional prediction methods like regression analysis
cannot derive the real correlation, and they often ignore the
differences of various network conditions [13, 27].

Thanks to the development of deep learning, we are now pos-
sessing quantities of useful tools to solve the problem, while there
are some necessary reformations. Long short-term memory (LSTM)
is an artificial recurrent neural network (RNN) architecture [14, 16,
19]. With the feedback connections, LSTM is able to deal with data
sequences while other standard neural networks can only process
single data points. LSTM networks are well-suited to classifying
and making predictions based on time series data, which makes it
an appropriate model to predict the packet loss patterns [15, 32]. In
the meanwhile, the clustering algorithms can help us distinguish
diverse network conditions. A weakness of LSTM as well as the
other neural networks is the high complexity [3, 4, 6]. It consumes a
lot of time to train an LSTM network, especially when the dataset is
very large. Even though a well-trained LSTM network is provided,
the computation complexity of predicting is too high for RTC ap-
plications to spare the time during real-time streaming. Therefore,
lightweight techniques should be applied to the LSTM networks
[17, 22, 33].

In this paper, we propose LightFEC, a network adaptive FEC
system, to more accurately predict packet loss patterns and improve
the performance of FEC. Based on LSTM, a powerful deep neural
network aiming at processing time-related data sequences, together
with clustering methods and lightweight techniques, LightFEC can
perfectly solve the challenges in real-time streaming applications.
Firstly, it makes good use of clustering algorithms so as to fit with

different network conditions. In this way, both the prediction ac-
curacy and generalization ability can be improved. Secondly, deep
learning methods have been applied to accurately derive the rela-
tion between historical and future packet loss patterns. And finally,
it utilizes lightweight methods to ensure that the whole model
can be implanted on the premise of normal real-time prediction of
network.

We have carried out extensive experiments under controlled test-
bed and different network conditions with large datasets collected
on-line. After comparing our proposed scheme with baseline algo-
rithms and general LSTM networks, we found that our approach
outperforms the other methods in prediction accuracy. With the
lightweight technique applied, the efficiency of on-line predicting
is greatly improved.

The rest of paper is organized as follows. Section 2 introduces
the motivations and observations of our work. Section 3 specifically
presents the structure designs as well as the processes of training
and predicting of our proposed approach. In Section 4, we reveal
our experiments and analyze the results to evaluate the different
methods’ performances, and eventually we come to the conclusion
in Section 5.

2 MOTIVATIONS AND OBSERVATIONS
2.1 Motivations
There are lots of works about FEC [21, 25, 28], focusing on precisely
predicting packet loss pattern and generating redundant packets
according to the results, but the performance are not entirely sat-
isfactory. On the whole, there are three problems of these works
about FEC that are not yet well solved, which have great influence
on the performance of FEC methods.

Problem 1: using a static model to deal with different net-
work conditions. A representative category of FEC methods is
traditional, which do not make any prediction about the changes of
packet loss rate. For example, Fix-RS always gives a fixed number
as the redundancy ratio, assuming that the network conditions will
maintain on the same level all the time. Obviously, it has limita-
tions to some extent, and may not work well in all circumstances.
Figure 2(a) shows that in real-time network streaming, this kind of
algorithms can easily make mistakes, thus being unable to recover
all the source packets. Fix-RS assumes that the network conditions
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(a) Clustering Result (b) Clustering Similarity

Figure 3: The result ofDBSCANon the training dataset, togetherwith the similarity of clustering results over different datasets.

always keep stable and do not fluctuate frequently, so it applies
a static model without classifying different network conditions.
That is to say, the network fluctuations which could significantly
influence packet loss are neglected. Nevertheless, this premise is
not always confidential, and it can result in intolerable errors.

Problem 2: the lack of powerful algorithms for figuring
out the routine of packet loss patterns. Another category of
FEC methods applies relatively simple prediction algorithms, try-
ing to adapt to the fluctuations of network. Adaptive-FEC is a
classical method, which thinks that the future packet loss pattern is
completely determined by the history, and just takes the historical
loss rate as prediction result. Adaptive-FEC wants to distinguish
network conditions, but it does not use parameters to quantify the
difference. On the contrast, it assumes that the future loss pattern
is deeply dependent on or even almost identical to the historical
loss pattern. Figure 2(b) reveals thatAdaptive-FEC also frequently
make mistakes.

Problem3: the lack of generalization ability. Apart from the
traditional FEC methods, some schemes use complex algorithms
like deep learning methods, but there are also some shortcomings,
such as over-fitting and the huge time consumption on prediction.
In order to derive the correlation, it is normal to think of deep
learning methods. This category of data-driven algorithms can
learn from large datasets and find out the hidden relations. However,
if it just relies on off-line training without preprocessing on the
whole dataset, it can be easily over-fitting since the samples of
different network states differ greatly in number. This problem
makes the naive off-line training unable to make correct predictions
under various network conditions. For instance,DeepRS [7], a loss-
predicting system based on LSTM model, ignores the differences
between various network conditions and treats all the loss patterns
in the same way, which could make unbearable prediction mistakes
in some clusters of samples. Besides, the structure is too complex
and consumes a lot of time while predicting packet loss patterns.

In view of the deficiencies revealed by the previous works, a new
tool which is network adaptive and lightweight should be raised to
efficiently deal with the problem of predicting packet loss patterns.

2.2 Observations
In order to overcome the shortcomings of existed works, we put
forward two assumptions, and make experiments to demonstrate
them.

Assumption 1: statistics of RTT and Loss Rate are reason-
able parameters to quantify network conditions. As is men-
tioned in Section 2.1, it is necessary to find out the metrics to
quantify network conditions. RTT and Loss Rate seem to be good
choices, because they are not only directly influenced by network
conditions but also easy to measure or calculate. Since RTC is based
on User Datagram Protocol (UDP), There is not as much reference
information in the packet headers as TCP. We choose RTT, which
is attached to any data packet and is able to directly present the
current network conditions. In the meanwhile, we calculate packet
loss rate in the historical and future block, due to that loss rate
can also reveal whether the network conditions are good or not to
some extent. By calculating the averages of RTT and loss rate for
a packet sequence, we can estimate whether network conditions
are good or bad. Besides, judging by the standard deviation of RTT,
the fluctuations of network conditions can also be quantified.

To evaluate whether the three metrics can classify different net-
work conditions, we also need an appropriate classification algo-
rithm. Since the network conditions are not inherent properties of
a packet sequence, we take the problem of distinguishing diverse
network conditions as an unsupervised learning problem. There-
fore, DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm [12] can divide the network conditions into
several categories. The clustering results are shown in Figure 3(a).
We use min-max normalization to transform the value of RTT into
a decimal between 0 and 1, then name the newmetric as 𝛿-RTT, and
we name the standard deviation of 𝛿-RTT as 𝛿-STD. We construct
the feature space with Loss Rate, average 𝛿-RTT and 𝛿-STD. The
points in the figure are corresponding with data samples. It can be
spotted that the data samples are mainly classified into two clusters,
named as Class 1 and 2. The other samples are too isolated to clus-
ter, so they are classified into an additional Class 3. The two main
clusters contain over 90% samples of training dataset, and they are
clearly separated. These results prove that Loss Rate, 𝛿-RTT and
𝛿-STD are reasonable parameters to quantify network conditions.

Assumption 2: the classification of network conditions is
robust. If our classification of network conditions is only avail-
able to the training dataset, it cannot be applied to real Internet
environment.

In order to evaluate the generalization ability, we have collected
data samples with different access types (WLAN, 4G, Wi-Fi). The
similarity of clustering results over these datasets are shown in

Poster Session 4 MM ’21, October 20–24, 2021, Virtual Event, China

3594



Figure 4: The process of training. All the training data go
through clustering, then each cluster trains its own LSTM
model.

Figure 3(b). X-axis records the results of labeling samples the cluster
they belong to according to the previous trained model, and y-
axis represents the results of applying DBSCAN to the datasets
themselves. The value of row 𝑖 , column 𝑗 means the ratio of samples
clustered as Class 𝑖 by DBSCAN, and labeled as Class 𝑗 by KNN
(K-Nearest Neighbor) based on the previous trained model. For each
dataset, the sum of all the nine values is 1. For Dataset 1, the ratio
of samples labeled as Class 1 or 2 is over 95%, which means that
most of the samples can be well classified according to network
conditions. As for Dataset 2, the proportion of Labeled Class 2 drops
a little, but the ratio of Labeled Class 2 increases accordingly, thus
the number of samples labeled as Class 3 is still very small. The
results of Dataset 3 is similar to that of Dataset 1. It can be spotted
that the diagonal values are always bigger than the other ones for
each dataset, meaning that the clusters mainly keep a relatively
high similarity. Therefore, it is convincing that the classification of
network conditions is robust whatever the dataset is.

3 SYSTEM DESIGN
We have designed LightFEC, a lightweight network-adaptive FEC
system which has good generalization ability, to better solve the
problem of predicting packet loss. We take the problem of distin-
guishing diverse network conditions as an unsupervised learning
problem. With the help of reference information, Loss Rate, aver-
age 𝛿-RTT and 𝛿-STD in the historical sequences, the DBSCAN
algorithm can divide the network conditions into several categories.
After that, each cluster trains its own LSTM network off-line, so
that the models can independently predict the samples of different
network conditions. The general forms of input, output and loss
function of LSTM are not suitable for packet loss pattern prediction,
so we have made some improvements about them. Finally, we select
weight pruning as the lightweight method to compress the LSTM
network, so as to decrease the time of prediction to a level that the
RTC applications can afford.

3.1 System Overview
LightFEC mainly consists of two modules: 1) DBSCAN module,
for classifying data samples according to the different network con-
ditions, and 2) Lightweight LSTM predicting module, for predicting
the future loss pattern based on the historical packets.

During the training process, we carry out some preliminaries for
the two modules, as is shown in Figure 4. Firstly, the whole training

Figure 5: Compressing neural networks by weight pruning
method. For each weight set, we sort the weights by their
absolute values and remove them by masking to zero. The
red lines represent the weights to be pruned.

dataset is divided into several clusters by applying DBSCAN algo-
rithm. Samples in the same cluster share similar network conditions,
while samples of different clusters may be collected under distinct
network states. Secondly, each cluster separately trains an LSTM
model based on its own data samples, so as to obtain a reliable tool
to predict packet loss pattern of its network conditions. Eventually
we apply compression methods to the trained models, and obtain
the final lightweight LSTM networks.

3.2 Clustering Algorithm
We apply clustering algorithm to independently train models for
different network conditions so as to overcome the shortcoming
that a model trained without distinguishing network states could
make unbearable mistakes. If we train the model on the whole
dataset, it is impossible to distinguish different network conditions.
A clustering algorithm can not only solve this problem but also
improve the generalization ability of the whole model.

As for the specific clustering algorithm, we choose DBSCAN to
divide the feature space in a data-driven way. DBSCAN is a density-
based clustering algorithm: given a set of points in some space, it
groups together points with many nearby neighbors, and mark as
outliers points that lie alone in low-density regions. Considering
a set of points in some space to be clustered, DBSCAN uses a
parameter 𝜖 , which represents the threshold of density, to classify
the points as core points, density-reachable points and outliers.
Unlike k-means [30], DBSCAN does not require the number of
clusters as a parameter. Rather it infers the number of clusters
based on the data, and it can discover clusters of arbitrary shape.
For comparison, k-means usually discovers spherical clusters. In
Figure 3(a), we set 𝜖 = 0.0037 to ensure the ratio of main clusters is
over 90%. Section 2.2 tells why we select Loss Rate, average 𝛿-RTT
and 𝛿-STD to identify different network conditions. For a packet
sequence, the Loss Rate and average 𝛿-RTT can reveal the overall
quality of network, while we can calculate 𝛿-STD to measure the
fluctuations of network. 𝛿-RTT is defined as:

𝛿-𝑅𝑇𝑇 =
𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇𝑚𝑎𝑥 − 𝑅𝑇𝑇𝑚𝑖𝑛
,

then we can calculate average 𝛿-RTT:

𝛿-𝑅𝑇𝑇 =
1
𝑁

𝑁∑
𝑖=1

𝛿-𝑅𝑇𝑇𝑖 ,
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Figure 6: The ratio of accuracy, model size and computation time of prediction after lightweight process. y-value represents
the relative value of primary LSTM network without applying lightweight method.

and 𝛿-STD:

𝛿-𝑆𝑇𝐷 =

√√√
1
𝑁

𝑁∑
𝑖=1

(𝛿-𝑅𝑇𝑇𝑖 − 𝛿-𝑅𝑇𝑇 )2 .

Therefore, we choose these three parameters to form the input
vector of DBSCAN:

v𝐷𝐵𝑆𝐶𝐴𝑁 = {𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒, 𝛿-𝑅𝑇𝑇, 𝛿-𝑆𝑇𝐷},

and it outputs the cluster which the sample belongs to.

3.3 LSTM Design
In this section, we introduce the design of LSTM module, with
which we can make accurate predictions for the time-related packet
sequences. LSTM is an artificial RNN architecture. With the feed-
back connections, LSTM networks are well-suited to classifying
and making predictions based on time series data, which makes it
an appropriate model to predict the packet loss patterns.

In order to improve the performance of LSTM, we have changed
the form of input and output vectors for this module. To train and
evaluate the LSTM networks for predicting the packet loss pattern,
we have collected data traces from real Internet. During an RTC
streaming, for every 500 packets, we take the first 300 packets as
the historical loss pattern, the second 100 packets as a gap, and the
last 100 packets as the future loss pattern to be predicted. The gap
is set for this reason. Real-time multimedia streaming carried by
protocols like UDP is strictly constrained on delay. Consequently,
source packets are sent continuously with a very short interval
which is less than RTT significantly. In another word, a source
packet is already sent before the sender receives the feedback of
the last packet. After setting the gap, we can ensure that while
applying this scheme in real world, the historical loss pattern of
every sample has always been collected before predicting. Instead
of simply using a boolean value to represent each packet is lost or
not, we choose RTT to record the state:

v𝐿𝑆𝑇𝑀 = {𝑟1, 𝑟2, ..., 𝑟𝑛},

while

𝑟𝑖 =

{
−1, if packet loss happens,
𝑅𝑇𝑇, otherwise,

for 𝑖 ∈ {1, 2, ..., 𝑛}, and:

𝑁 =

{
300, input,
100, output.

If a packet is successfully received, it has its own RTT, while a
lost packet cannot confirm its RTT, so the RTT sequence can also
express the loss pattern and contain more information than boolean
vector. Although we have already calculated average RTT of the
historical sequence for each sample as a feature of network condi-
tions, the RTT of every packet can reveal the packet’s state more
precisely.

To improve the adaptability towards various network conditions,
we have revised the form of loss function. General LSTM normally
uses L2-norm loss function. However, we have found that for the
samples in some clusters, the prediction result tend to lean to one
side, so we changed the form of loss function as:

𝐿 =
𝜆

2𝑛1

∑
𝑥 ∈𝑆1

∥𝑦 (𝑥) − 𝑎(𝑥)∥2 + 𝜇

2𝑛2

∑
𝑥 ∈𝑆2

∥𝑦 (𝑥) − 𝑎(𝑥)∥2

where 𝐿 represents the cost, 𝑥 represents the sample, 𝑦 represents
the actual value, and 𝑎 represents the output value. 𝑛1 = |𝑆1 |, 𝑛2 =
|𝑆2 |, 𝜆 + 𝜇 = 1. 𝑆1 includes samples of which the predicted loss rate
is lower than the real loss rate, and 𝑆2 consists of samples that the
predicted loss rate is higher. 𝜆 and 𝜇 represent theweights of the two
sets. By adjusting the weights, we can give different punishments
to the two kinds of samples and improve the prediction accuracy.

The final result is also reformed. We do not simply use the out-
put vector of LSTM network as the prediction result, instead, we
calculate the packet loss rate based on the vector, and regard that
number as the final result. For the output, a vector form is not
suitable for solving the problem of packet loss. On the one hand,
according to the network conditions, the amount of lost packets in
an incoming block can be predicted by learning from the historical
pattern, but the loss state of each packet is hard to be exactly deter-
mined because of randomness. On the other hand, actually we do
not need to know the packet loss state for each packet accurately.
What we are concerned about is the count of losses in this block,
which decides the parameters of FEC packets. As a result, we attach
a fully connected layer to the end of LSTM model, reducing the
dimension of the output to 1.
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Figure 7: Performance over test dataset. Error bars show 95% confidence intervals.

3.4 Lightweight Method
Because of the high complexity of LSTM network, it is necessary
to reduce the computation cost of LSTM at inferring phase, which
cannot fulfill the requirement for low time consumption in RTC
applications. According to our LSTM design, we should predict the
packet loss pattern for every 100 packets, and encode FEC packets
for them. Therefore, it is necessary to put forward lightweight
method to compress the models, so as to decrease the time cost of
on-line predicting.

For the well-trained LSTM models, we adopt weight pruning
algorithm [18, 24] as our lightweight technique, which can sig-
nificantly reduce the network size and computational complexity.
Pruning algorithm usually aims to finding an effective evaluation
method to judge the importance of connections (i.e., weight prun-
ing) or neurons (i.e., neuron pruning), and to cut the unimportant
ones to reduce the redundancy of the model. After pruning phase,
the model should be retrained to ensure that the prediction accuracy
does not reduce significantly.

Figure 5 is the diagram of our weight pruning algorithm. Firstly,
we sort the weights by their absolute values. Then we remove
the smallest weights of a certain ratio by setting them to zero.
Since our LSTM network contains of different layers, we divide
the weights into several sets, so as to separately sort and prune
them. The weight sets are divided by the layers they connect. For
the weights between LSTM cells, they are classified into the same
set as the weights between LSTM layer and the next hidden layer.
We repeat the process of pruning and retraining for the original
LSTM network, so that we obtain the lightweight model. In this way,
we can use a smaller weight matrix to store the neuron network,
and reduce the time cost by making fewer calculations during the
process of prediction.

The pruning method could reduce the size and complexity of
LSTM, but it also drops the accuracy, so that we should decide
the ratio of pruned weights by both our need of time cost and
the accuracy loss. We have iterated all the pruned ratios, and the
results are demonstrated in Figure 6. With the ratio of pruned
weights increasing, the prediction accuracy tends to decline, but
the difference is not so obvious before the ratio reaches 70%. The
model size nearly has a linear correlation with pruned weights. As
for time cost of making a prediction, it drops rapidly at first, but it
does not change obviously after the ratio reaches 80%. According
to these phenomenons, it can be spotted that the pruning methods
work well on solving our problem. Even if we remove 60% of the
less important weights, the accuracy loss is less than 5%, while the
time of prediction can reduce to less than 20% of the initial value.

Therefore, 60% may be an appropriate ratio of weights to be pruned,
and we decide this value to prune and retrain our LSTM network
so as to obtain the final model.

3.5 Process of Predicting
In this section, we summarize what happens during the process
of predicting, to show how LightFEC achieves its generalization
ability.

As for the the process of predicting, each new unlabeled sample
checks Loss Rate, average 𝛿-RTT and 𝛿-STD of its input vector,
then using KNN to label which cluster it belongs to, instead of
doing DBSCAN again. In this way, we do not need to spend ex-
tra time collecting a new dataset and clustering. On the contrast,
we apply the previous well-trained clustering results to the new
samples, which is proved convincing in Section 2.2. After that, the
LSTM model corresponding to this cluster makes prediction and
gives the prospective future loss pattern. Finally, we generate the
redundant packets according to the results of predicted packet loss
pattern. The adaptation of the entirely new test samples reveals the
generalization ability of the scheme.

4 EXPERIMENTS AND EVALUATIONS
We have collected packet loss data samples from November 1st to
December 30th on a cloud server. The whole dataset contains about
540 million data samples, each of which is a packet loss sequence
of 500 packets, with the dividing mode described in Section 3.3. We
randomly choose half of this dataset for training the data-driven
models, and evaluate them in the following sections without extra
training. The other half of the dataset is used for experiments in
Section 4.1.

To validate the performance of LightFEC, we have carried
out extensive experiments, including the evaluations over vari-
ous datasets. Based on the results in Section 3.4, we select 60% as
the ratio of pruning to build our final LightFECmodel. After all the
reform and improvements of our proposed scheme, we can evaluate
its performance on the real-world validation dataset and compare
it with other packet loss pattern prediction algorithms. We select
the following methods for comparison:

• Fix-RS: A naive RS methods, which applies a fixed redun-
dancy ratio.

• Adaptive-FEC: Thewidely used packet loss predictionmethod,
which calculates the loss rate of historical pattern and just
take it as the prediction result.

• DeepRS: An LSTM network trained on the whole training
dataset. The form of its input is binary vectors, and the
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Figure 8: Performance over various network conditions. Error bars show 95% confidence intervals.

loss function is general L2-norm loss function without any
adjustment.

• LightFEC: This is our proposed method. It utilizes DBSCAN
to divide the training dataset, independently train an LSTM
network for each cluster with RTT pattern input and ad-
justed loss function. After training, all the LSTM networks
go though 60% weight pruning to improve the efficiency.

In performance comparison, we take the following measurement
metrics into consideration:

• Recovery Ratio. The ratio of recovered packets to all lost
packets. For instance, recovery ratio is 1 when all lost pack-
ets are recovered. Conversely, recovery ratio is 0 if all lost
packets cannot be recovered.

• RedundancyRatio. The ratio of redundant packets to source
packets. For instance, if RS module generates 𝑘 FEC packets
with a block including 𝑏 source packets, the redundancy
ratio is 𝑘

𝑏
.

4.1 Performance over Test Dataset
The first part of our experiments is to evaluate the schemes in the
same network conditions as training environment. In this section,
we construct Test Dataset by choosing the other half of the data
samples which are not used to train the models, as is mentioned in
Section 4. In this way, we can compare the performance of different
schemes over Test Dataset, mainly judging by three aspects: a)
the prediction accuracy of schemes using adaptive algorithms, b)
the time cost of making a prediction, and c) the redundancy and
recovery ratio for each scheme.

In order to evaluate whether the network-adaptive schemes can
precisely make predictions for packet loss patterns, we summarize
the distributions of prediction error, and record the results in Fig-
ure 7(a). For each sample, the difference value between its real loss
rate and the prediction result is defined as prediction error. Fix-
RS always construct FEC packets with the same redundancy ratio,
without making any prediction, so it is not included in this figure. It
can be spotted that Adaptive-FEC tend to make more mistakes in
predicting packet loss patterns comparing with the other schemes,
because of its naive algorithm. Once the network conditions change
frequently, the prediction results of Adaptive-FEC are no more
credible. BothDeepRS and LightFECmake relatively accurate pre-
dictions owing to their LSTM network, but LightFEC outperforms
DeepRSwith the reformation of network and the pre-classification
of clustering algorithm.

The detailed evaluation of computation complexity is shown in
Figure 7(b). Cluster-LSTM refers to the scheme containing DB-
SCAN module and LSTM network. The only difference between
Cluster-LSTM and LightFEC is that the former does not apply the
lightweight method. By comparing the two versions, we can figure
out the influence in performance of pruning method. Among the
three LSTM-network-based schemes, DeepRS and Cluster-LSTM
do not apply lightweight methods, thus consuming a lot of time
to make predictions, mainly between 2-3ms. As is mentioned in
Section 3.4, the time cost cannot always fulfill the requirements of
RTC applications. However, as for LightFEC, the time of making
a prediction is about 0.4ms, much shorter than the other schemes.
The removal of less important weights saves the time, leading into
a faster prediction process.

We also compared the recovery and redundancy ratio in Figure
7(c), for the four schemes mentioned in Section 4. The higher re-
covery ratio (y-value) and the lower redundancy ratio (x-value)
mean the better performance, thus we reverse x-axis so that the top
rightmost point represents the best performance. According to the
results, we can see that even if pruning method leads to some loss,
LightFEC still gets the lowest redundancy ratio and the highest
recovery ratio, comparing with the other schemes. Fix-RS always
chooses the same redundancy ratio, which cannot efficiently solve
the problem of packet loss. For Adaptive-FEC, the redundancy ra-
tio varies significantly, but it does not bring too much improvement
in recovery ratio. Although DeepRS benefits from LSTM network,
it still obtain worse performance compared with LightFEC.

4.2 Performance over Various Network
Conditions

To validate the performance over different network conditions, we
have collected packet loss data from December 31st to January
15th on another cloud server, with access type set as 4G and Wi-Fi,
named as Validation Dataset 1 and 2. The datasets contain about
150 million data samples, each of which is a packet loss sequence
of 500 packets, with the dividing mode described in Section 3.3. By
changing the server and type of access link, the network conditions
may vary greatly, which makes the performance more convincing.
We use the same trained models as in Section 4.1 without any
training over the new datasets.

In order to figure out whether the results of clustering are still
convincing, we calculate the ratios of samples classified as Class 1,
2 and 3, by straightly using the well-learned model over training
dataset to label them, instead of applying DBSCAN algorithm to the
validation datasets. The distributions are summarized in Figure 8(a).
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(a) Sample Distribution (b) Prediction Accuracy (c) Redundancy and Recovery Ratio

Figure 9: Performance over time-varying datasets. Error bars show 95% confidence intervals.

Table 1: Performance overVariousNetworkConditions ([Av-
erage Recovery Ratio, Average Redundancy Ratio])

Fix-RS Adaptive-FEC DeepRS LightFEC
Test [0.623, 0.100] [0.685, 0.079] [0.792, 0.063] [0.903, 0.054]

Validation 1 [0.598, 0.100] [0.624, 0.088] [0.743, 0.075] [0.854, 0.058]
Validation 2 [0.619, 0.100] [0.633, 0.085] [0.787, 0.068] [0.887, 0.052]
All Data [0.616, 0.100] [0.657, 0.083] [0.779, 0.067] [0.887, 0.055]

As is mentioned in Section 3.2, Class 3 mostly consists of outliers.
For each dataset, most of the samples are classified in Class 1 and 2,
meaning that the network conditions can be well identified.

The LSTMmodule is also evaluated over these validation datasets.
As for the prediction accuracy of packet loss patterns, Figure 8(b)
reveals whether LightFEC can precisely predict the packet loss
patterns for these datasets. Although the access type has an signif-
icant influence on the network conditions, it can be spotted that
LightFEC maintains its prediction accuracy.

As for the overall performance, Figure 8(c) shows the results
of evaluating our proposed LightFEC according to redundancy
and recovery ratio. Since Validation Dataset 1 is collected over 4G
network, there are probably more network fluctuations, leading to
relatively higher loss rate together with higher redundancy ratio.
But the degradation is still tolerable, and the recovery ratio still
keeps at a high level. For Validation Dataset 2, the performance is
similar to that of Test Dataset. The results prove that LightFEC has
the potential to be applied into various network conditions without
changing the primary trained model.

The evaluation results of the four schemes over the different
datasets are listed in Table 1. Whichever the scheme is, the overall
performance drops over the validation datasets, since the network
conditions have gaps. However, the degradation of LightFEC is
still acceptable, and its recovery ratio is always higher comparing
with the other schemes.

4.3 Performance over Time-varying Datasets
Besides the properties of network links, the time of data transmis-
sion also makes influence on packet loss patterns, since network
conditions can vary over time. In order to evaluate whether our
proposed scheme is able to overcome this kind of fluctuations, we
divide Test Dataset into three parts according to the time of day, and
validate LightFEC over them. We still use the same trained models
as in Section 4.1 without extra training over the new datasets.

Owing to the need of evaluating the performance of clustering
module, the sample distributions of these datasets are displayed
in Figure 9(a). As is shown in Figure 3(a), Class 1 contains of data
samples with relatively lower Loss Rate and RTT, which means that

Table 2: Performance over Time-varying Datasets ([Average
Recovery Ratio, Average Redundancy Ratio])

Fix-RS Adaptive-FEC DeepRS LightFEC
0:00-8:00 [0.709, 0.100] [0.722, 0.035] [0.875, 0.058] [0.925, 0.044]
8:00-16:00 [0.651, 0.100] [0.694, 0.067] [0.834, 0.062] [0.909, 0.047]
16:00-24:00 [0.570, 0.100] [0.621, 0.093] [0.802, 0.079] [0.872, 0.059]

All Data (Test) [0.623, 0.100] [0.685, 0.079] [0.792, 0.063] [0.903, 0.054]

the network conditions may be smooth without too much error.
The samples collected from 0:00 to 16:00 do not need to face too
much network congestion, so the ratio of Class 1 is a little higher.
On the contrast, The samples collected from 16:00 to 24:00 are more
likely to suffer from network congestion, resulting in higher ratio
of Class 2. However, Class 3 still consists of the fewest samples,
proving that these datasets are well classified.

As for the prediction accuracy of LSTM module, Figure 9(b)
shows the results of prediction error. It can be spotted that the
prediction accuracy does not reduce evidently, which means that
the LSTM module still works well in making predictions over these
time-varying datasets.

The performance over these datasets are also validated. Accord-
ing to redundancy and recovery ratio in Figure 9(c), the results are
even better with the datasets of 0:00-16:00. For the samples of 16:00-
24:00, they may suffer from the worst network conditions, which
leads to the highest redundancy ratio, but the reduce in recovery
ratio is still acceptable. The results inform that LightFEC has the
potential to deal with network fluctuations overtime.

We also evaluate the overall performance of the four schemes
over the time-varying datasets, and list the results in Table 2. Com-
paring with the other schemes, LightFEC always gets the lowest
redundancy ratio and the highest recovery ratio, owing to its well-
trained models and generalization ability.

5 CONCLUSION
In this paper, we propose LightFEC, a packet loss pattern predic-
tion scheme based on LSTM networks, to accurately predict packet
loss pattern in real-time streaming applications. LightFEC is net-
work adaptive by using DBSCAN to distinguish network conditions
according to statistics of historical RTT and packet loss rate, and
lightweight by applying pruning methods. Unlike traditional packet
loss prediction algorithms, LightFEC can deal with various network
conditions and analysis the relation between historical and future
loss patterns. According to the results of well-designed experiments,
we find out that LightFEC outperforms other schemes on prediction
accuracy, and improves the packet recovery ratio while keeping
the redundancy ratio at a low level.
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