
Edge Boxes: Locating
Object Proposals from Edges

C. Lawrence Zitnick and Piotr Dollár

Microsoft Research

Abstract. The use of object proposals is an effective recent approach
for increasing the computational efficiency of object detection. We pro-
pose a novel method for generating object bounding box proposals us-
ing edges. Edges provide a sparse yet informative representation of an
image. Our main observation is that the number of contours that are
wholly contained in a bounding box is indicative of the likelihood of the
box containing an object. We propose a simple box objectness score that
measures the number of edges that exist in the box minus those that
are members of contours that overlap the box’s boundary. Using efficient
data structures, millions of candidate boxes can be evaluated in a fraction
of a second, returning a ranked set of a few thousand top-scoring propos-
als. Using standard metrics, we show results that are significantly more
accurate than the current state-of-the-art while being faster to compute.
In particular, given just 1000 proposals we achieve over 96% object recall
at overlap threshold of 0.5 and over 75% recall at the more challenging
overlap of 0.7. Our approach runs in 0.25 seconds and we additionally
demonstrate a near real-time variant with only minor loss in accuracy.

Keywords: object proposals, object detection, edge detection

1 Introduction

The goal of object detection is to determine whether an object exists in an
image, and if so where in the image it occurs. The dominant approach to this
problem over the past decade has been the sliding windows paradigm in which
object classification is performed at every location and scale in an image [1–
3]. Recently, an alternative framework for object detection has been proposed.
Instead of searching for an object at every image location and scale, a set of
object bounding box proposals is first generated with the goal of reducing the
set of positions that need to be further analyzed. The remarkable discovery
made by these approaches [4–11] is that object proposals may be accurately
generated in a manner that is agnostic to the type of object being detected.
Object proposal generators are currently used by several state-of-the-art object
detection algorithms [5, 12, 13], which include the winners of the 2013 ImageNet
detection challenge [14] and top methods on the PASCAL VOC dataset [15].

High recall and efficiency are critical properties of an object proposal gen-
erator. If a proposal is not generated in the vicinity of an object that object

2 C. Lawrence Zitnick and Piotr Dollár

Fig. 1. Illustrative examples showing from top to bottom (first row) original image,
(second row) Structured Edges [16], (third row) edge groups, (fourth row) example
correct bounding box and edge labeling, and (fifth row) example incorrect boxes and
edge labeling. Green edges are predicted to be part of the object in the box (wb(si) = 1),
while red edges are not (wb(si) = 0). Scoring a candidate box based solely on the
number of contours it wholly encloses creates a surprisingly effective object proposal
measure. The edges in rows 3-5 are thresholded and widened to increase visibility.

cannot be detected. An effective generator is able to obtain high recall using a
relatively modest number of candidate bounding boxes, typically ranging in the
hundreds to low thousands per image. The precision of a proposal generator is
less critical since the number of generated proposals is a small percentage of the
total candidates typically considered by sliding window approaches (which may
evaluate tens to hundreds of thousands of locations per object category). Since
object proposal generators are primarily used to reduce the computational cost
of the detector, they should be significantly faster than the detector itself. There
is some speculation that the use of a small number of object proposals may even
improve detection accuracy due to reduction of spurious false positives [4].

In this paper we propose Edge Boxes, a novel approach to generating object
bounding box proposals directly from edges. Similar to segments, edges provide
a simplified but informative representation of an image. In fact, line drawings of

Edge Boxes: Locating Object Proposals from Edges 3

an image can accurately convey the high-level information contained in an image
using only a small fraction of the information [17, 18]. As we demonstrate, the
use of edges offers many computational advantages since they may be efficiently
computed [16] and the resulting edge maps are sparse. In this work we investigate
how to directly detect object proposals from edge-maps.

Our main contribution is the following observation: the number of contours
wholly enclosed by a bounding box is indicative of the likelihood of the box
containing an object. We say a contour is wholly enclosed by a box if all edge
pixels belonging to the contour lie within the interior of the box. Edges tend to
correspond to object boundaries, and as such boxes that tightly enclose a set
of edges are likely to contain an object. However, some edges that lie within
an object’s bounding box may not be part of the contained object. Specifically,
edge pixels that belong to contours straddling the box’s boundaries are likely
to correspond to objects or structures that lie outside the box, see Figure 1. In
this paper we demonstrate that scoring a box based on the number of contours
it wholly encloses creates a surprisingly effective proposal measure. In contrast,
simply counting the number of edge pixels within the box is not as informative.
Our approach bears some resemblance to superpixels straddling measure intro-
duced by [4]; however, rather than measuring the number of straddling contours
we instead remove such contours from consideration.

As the number of possible bounding boxes in an image is large, we must
be able to score candidates efficiently. We utilize the fast and publicly avail-
able Structured Edge detector recently proposed in [16, 19] to obtain the initial
edge map. To aid in later computations, neighboring edge pixels of similar ori-
entation are clustered together to form groups. Affinities are computed between
edge groups based on their relative positions and orientations such that groups
forming long continuous contours have high affinity. The score for a box is com-
puted by summing the edge strength of all edge groups within the box, minus
the strength of edge groups that are part of a contour that straddles the box’s
boundary, see Figure 1.

We evaluate candidate boxes utilizing a sliding window approach, similar
to traditional object detection. At every potential object position, scale and
aspect ratio we generate a score indicating the likelihood of an object being
present. Promising candidate boxes are further refined using a simple coarse-to-
fine search. Utilizing efficient data structures, our approach is capable of rapidly
finding the top object proposals from among millions of potential candidates.

We show improved recall rates over state-of-the-art methods for a wide range
of intersection over union thresholds, while simultaneously improving efficiency.
In particular, on the PASCAL VOC dataset [15], given just 1000 proposals we
achieve over 96% object recall at overlap threshold of 0.5 and over 75% recall
at an overlap of 0.7. At the latter and more challenging setting, previous state-
of-the-art approaches required considerably more proposals to achieve similar
recall. Our approach runs in quarter of a second, while a near real-time variant
runs in a tenth of a second with only a minor loss in accuracy.

4 C. Lawrence Zitnick and Piotr Dollár

2 Related work

The goal of generating object proposals is to create a relatively small set of
candidate bounding boxes that cover the objects in the image. The most com-
mon use of the proposals is to allow for efficient object detection with complex
and expensive classifiers [5, 12, 13]. Another popular use is for weakly supervised
learning [20, 21], where by limiting the number of candidate regions, learning
with less supervision becomes feasible. For detection, recall is critical and thou-
sands of candidates can be used, for weakly supervised learning typically a few
hundred proposals per image are kept. Since it’s inception a few years ago [4, 9,
6], object proposal generation has found wide applicability.

Generating object proposals aims to achieve many of the benefits of image
segmentation without having to solve the harder problem of explicitly partition-
ing an image into non-overlapping regions. While segmentation has found limited
success in object detection [22], in general it fails to provide accurate object re-
gions. Hoiem et al. [23] proposed to use multiple overlapping segmentations to
overcome errors of individual segmentations, this was explored further by [24]
and [25] in the context of object detection. While use of multiple segmentations
improves robustness, constructing coherent segmentations is an inherently dif-
ficult task. Object proposal generation seeks to sidestep the challenges of full
segmentation by directly generating multiple overlapping object proposals.

Three distinct paradigms have emerged for object proposal generation. Can-
didate bounding boxes representing object proposals can be found by measuring
their ‘objectness’ [4, 11], producing multiple foreground-background segmenta-
tions of an image [6, 9, 10], or by merging superpixels [5, 8]. Our approach pro-
vides an alternate framework based on edges that is both simpler and more
efficient while sharing many advantages with previous work. Below we briefly
outline representative work for each paradigm; we refer readers to Hosang et
al. [26] for a thorough survey and evaluation of object proposal methods.

Objectness Scoring: Alexe et al. [4] proposed to rank candidates by com-
bining a number of cues in a classification framework and assigning a resulting
‘objectness’ score to each proposal. [7] built on this idea by learning efficient
cascades to more quickly and accurately rank candidates. Among multiple cues,
both [4] and [7] define scores based on edge distributions near window bound-
aries. However, these edge scores do not remove edges belonging to contours
intersecting the box boundary, which we found to be critical. [4] utilizes a super-
pixel straddling measure penalizing candidates containing segments overlapping
the boundary. In contrast, we suppress straddling contours by propagating in-
formation across edge groups that may not directly lie on the boundary. Finally,
recently [11] proposed a very fast objectness score based on image gradients.

Seed Segmentation: [6, 9, 10] all start with multiple seed regions and gener-
ate a separate foreground-background segmentation for each seed. The primary
advantage of these approaches is generation of high quality segmentation masks,
the disadvantage is their high computation cost (minutes per image).

Superpixel Merging: Selective Search [5] is based on computing multiple
hierarchical segmentations based on superpixels from [27] and placing bounding

Edge Boxes: Locating Object Proposals from Edges 5

boxes around them. Selective Search has been widely used by recent top detection
methods [5, 12, 13] and the key to its success is relatively fast speed (seconds
per image) and high recall. In a similar vein, [8] propose a randomized greedy
algorithm for computing sets of superpixels that are likely to occur together. In
our work, we operate on groups of edges as opposed to superpixels. Edges can
be represented probabilistically, have associated orientation information, and
can be linked allowing for propagation of information; properly exploited, this
additional information can be used to achieve large gains in accuracy.

As far as we know, our approach is the first to generate object bounding
box proposals directly from edges. Unlike all previous approaches we do not use
segmentations or superpixels, nor do we require learning a scoring function from
multiple cues. Instead we propose to score candidate boxes based on the number
of contours wholly enclosed by a bounding box. Surprisingly, this conceptually
simple approach out-competes previous methods by a significant margin.

3 Approach

In this section we describe our approach to finding object proposals. Object
proposals are ranked based on a single score computed from the contours wholly
enclosed in a candidate bounding box. We begin by describing a data structure
based on edge groups that allows for efficient separation of contours that are
fully enclosed by the box from those that are not. Next, we define our edge-based
scoring function. Finally, we detail our approach for finding top-ranked object
proposals that uses a sliding window framework evaluated across position, scale
and aspect ratio, followed by refinement using a simple coarse-to-fine search.

Given an image, we initially compute an edge response for each pixel. The
edge responses are found using the Structured Edge detector [16, 19] that has
shown good performance in predicting object boundaries, while simultaneously
being very efficient. We utilize the single-scale variant with the sharpening en-
hancement introduced in [19] to reduce runtime. Given the dense edge responses,
we perform Non-Maximal Suppression (NMS) orthogonal to the edge response
to find edge peaks, Figure 1. The result is a sparse edge map, with each pixel
p having an edge magnitude mp and orientation θp. We define edges as pixels
with mp > 0.1 (we threshold the edges for computational efficiency). A contour
is defined as a set of edges forming a coherent boundary, curve or line.

3.1 Edge groups and affinities

As illustrated in Figure 1, our goal is to identify contours that overlap the bound-
ing box boundary and are therefore unlikely to belong to an object contained by
the bounding box. Given a box b, we identify these edges by computing for each
p ∈ b with mp > 0.1 its maximum affinity with an edge on the box boundary.
Intuitively, edges connected by straight contours should have high affinity, where
those not connected or connected by a contour with high curvature should have
lower affinity. For computational efficiency we found it advantageous to group

6 C. Lawrence Zitnick and Piotr Dollár

edges that have high affinity and only compute affinities between edge groups. We
form the edge groups using a simple greedy approach that combines 8-connected
edges until the sum of their orientation differences is above a threshold (π/2).
Small groups are merged with neighboring groups. An illustration of the edge
groups is shown in Figure 1, row 3.

Given a set of edge groups si ∈ S, we compute an affinity between each pair of
neighboring groups. For a pair of groups si and sj , the affinity is computed based
on their mean positions xi and xj and mean orientations θi and θj . Intuitively,
edge groups have high affinity if the angle between the groups’ means in similar
to the groups’ orientations. Specifically, we compute the affinity a(si, sj) using:

a(si, sj) = |cos(θi − θij) cos(θj − θij)|γ , (1)

where θij is the angle between xi and xj . The value of γ may be used to adjust
the affinity’s sensitivity to changes in orientation, with γ = 2 used in practice. If
two edge groups are separated by more than 2 pixels their affinity is set to zero.
For increased computational efficiency only affinities above a small threshold
(0.05) are stored and the rest are assumed to be zero.

The edge grouping and affinity measure are computationally trivial. In prac-
tice results are robust to the details of the edge grouping.

3.2 Bounding box scoring

Given the set of edge groups S and their affinities, we can compute an object
proposal score for any candidate bounding box b. To find our score, we first
compute the sum mi of the magnitudes mp for all edges p in the group si. We
also pick an arbitrary pixel position x̄i of some pixel p in each group si. As we
will show, the exact choice of p ∈ si does not matter.

For each group si we compute a continuous value wb(si) ∈ [0, 1] that indicates
whether si is wholly contained in b, wb(si) = 1, or not, wb(si) = 0. Let Sb be
the set of edge groups that overlap the box b’s boundary. We find Sb using an
efficient data structure that is described in Section 3.3. For all si ∈ Sb, wb(si)
is set to 0. Similarly wb(si) = 0 for all si for which x̄i /∈ b, since all of its pixels
must either be outside of b or si ∈ Sb. For the remaining edge groups for which
x̄i ∈ b and si /∈ Sb we compute wb(si) as follows:

wb(si) = 1−max
T

|T |−1∏
j

a(tj , tj+1), (2)

where T is an ordered path of edge groups with a length of |T | that begins with
some t1 ∈ Sb and ends at t|T | = si. If no such path exists we define wb(si) = 1.
Thus, Equation (2) finds the path with highest affinity between the edge group
si and an edge group that overlaps the box’s boundary. Since most pairwise
affinities are zero, this can be done efficiently.

Using the computed values of wb we define our score using:

hb =

∑
i wb(si)mi

2(bw + bh)κ
, (3)

Edge Boxes: Locating Object Proposals from Edges 7

where bw and bw are the box’s width and height. Note that we divide by the
box’s perimeter and not its area, since edges have a width of one pixel regardless
of scale. Nevertheless, a value of κ = 1.5 is used to offset the bias of larger
windows having more edges on average.

In practice we use an integral image to speed computation of the numerator
in Equation (3). The integral image is used to compute the sum of all mi for
which x̄i ∈ b. Next, for all si with x̄i ∈ b and wb(si) < 1, (1 − wb(si))mi is
subtracted from this sum. This speeds up computation considerably as typically
wb(si) = 1 for most si and all such si do not need to be explicitly considered.

Finally, it has been observed that the edges in the center of the box are of less
importance than those near the box’s edges [4]. To account for this observation
we can subtract the edge magnitudes from a box bin centered in b:

hinb = hb −
∑
p∈bin mp

2(bw + bh)κ
, (4)

where the width and height of bin is bw/2 and bh/2 respectively. The sum of
the edge magnitudes in bin can be efficiently computed using an integral image.
As shown in Section 4 we found hinb offers slightly better accuracy than hb with
minimal additional computational cost.

3.3 Finding intersecting edge groups

In the previous section we assumed the set of edge groups Sb that overlap the
box b’s boundary is known. Since we evaluate a huge number of bounding boxes
(Sec. 3.4), an efficient method for finding Sb is critical. Naive approaches such
as exhaustively searching all of the pixels on the boundary of a box would be
prohibitively expensive, especially for large boxes.

We propose an efficient method for finding intersecting edge groups for each
side of a bounding box that relies on two additional data structures. Below,
we describe the process for finding intersections along a horizontal boundary
from pixel (c0, r) to (c1, r). The vertical boundaries may be handled in a similar
manner. For horizontal boundaries we create two data structures for each row
of the image. The first data structure stores an ordered list Lr of edge group
indices for row r. The list is created by storing the order in which the edge
groups occur along the row r. An index is only added to Lr if the edge group
index changes from one pixel to the next. The result is the size of Lr is much
smaller than the width of the image. If there are pixels between the edge groups
that are not edges, a zero is added to the list. A second data structure Kr with
the same size as the width of the image is created that stores the corresponding
index into Lr for each column c in row r. Thus, if pixel p at location (c, r) is
a member of edge group si, Lr(Kr(c)) = i. Since most pixels do not belong to
an edge group, using these two data structures we can efficiently find the list of
overlapping edge groups by searching Lr from index Kr(c0) to Kr(c1).

8 C. Lawrence Zitnick and Piotr Dollár

Fig. 2. An illustration of random bounding boxes with Intersection over Union (IoU)
of 0.5, 0.7, and 0.9. An IoU of 0.7 provides a reasonable compromise between very loose
(IoU of 0.5) and very strict (IoU of 0.9) overlap values.

3.4 Search strategy

When searching for object proposals, the object detection algorithm should be
taken into consideration. Some detection algorithms may require object propos-
als with high accuracy, while others are more tolerant of errors in bounding box
placement. The accuracy of a bounding box is typically measured using the In-
tersection over Union (IoU) metric. IoU computes the intersection of a candidate
box and the ground truth box divided by the area of their union. When eval-
uating object detection algorithms, an IoU threshold of 0.5 is typically used to
determine whether a detection was correct [15]. However as shown in Figure 2,
an IoU score of 0.5 is quite loose. Even if an object proposal is generated with
an IoU of 0.5 with the ground truth, the detection algorithm may provide a low
score. As a result, IoU scores of greater than 0.5 are generally desired.

In this section we describe an object proposal search strategy based on the
desired IoU, δ, for the detector. For high values of δ we generate a more con-
centrated set of bounding boxes with higher density near areas that are likely
to contain an object. For lower values of δ the boxes can have higher diversity,
since it is assumed the object detector can account for moderate errors in box
location. Thus, we provide a tradeoff between finding a smaller number of ob-
jects with higher accuracy and a higher number of objects with less accuracy.
Note that previous methods have an implicit bias for which δ they are designed
for, e.g. Objectness [4] and Randomized Prim [8] are tuned for low and high δ,
respectively, whereas we provide explicit control over diversity versus accuracy.

We begin our search for candidate bounding boxes using a sliding window
search over position, scale and aspect ratio. The step size for each is determined
using a single parameter α indicating the IoU for neighboring boxes. That is,
the step sizes in translation, scale and aspect ratio are determined such that one
step results in neighboring boxes having an IoU of α. The scale values range
from a minimum box area of σ = 1000 pixels to the full image. The aspect ratio
varies from 1/τ to τ , where τ = 3 is used in practice. As we discuss in Section
4, a value of α = 0.65 is ideal for most values of δ. However, if a highly accurate
δ > 0.9 is required, α may be increased to 0.85.

After a sliding window search is performed, all bounding box locations with
a score hinb above a small threshold are refined. Refinement is performed using

Edge Boxes: Locating Object Proposals from Edges 9

Fig. 3. Illustration of the computed score using (middle) and removing (right) contours
that overlap the bounding box boundary. Notice the lack of clear peaks when the
contours are not removed. The magnitudes of the scores are normalized for viewing.
The box dimensions used for generating the heatmaps are shown by the blue rectangles.

a greedy iterative search to maximize hinb over position, scale and aspect ratio.
After each iteration, the search step is reduced in half. The search is halted once
the translational step size is less than 2 pixels.

Once the candidate bounding boxes are refined, their maximum scores are
recorded and sorted. Our final stage performs Non-Maximal Suppression (NMS)
of the sorted boxes. A box is removed if its IoU is more than β for a box with
greater score. We have found that in practice setting β = δ+ 0.05 achieves high
accuracy across all values of δ, Section 4.

4 Results

In this section we explore the performance and accuracy of our Edge Boxes
algorithm in comparison to other approaches. Following the experimental setup
of previous approaches [7, 5, 8, 4] we evaluate our algorithm on the PASCAL VOC
2007 dataset [15]. The dataset contains 9,963 images. All results on variants of
our approach are reported on the validation set and our results compared to
other approaches are reported on the test set.

4.1 Approach variants

We begin by testing various variants of our approach on the validation set.
Figure 4(a, b) illustrates the algorithm’s behavior based on the parameters α
and β that control the step size of the sliding window search and the NMS
threshold, respectively, when generating 1000 object proposals.

As α is increased, the density of the sampling is increased, resulting in more
candidate boxes being evaluated and slower runtimes, Table 1. Notice that the
results for α = 0.65 are better than or nearly identical to α = 0.70 and α = 0.75.
Thus, if a lower IoU value δ is desired α = 0.65 provides a nice accuracy vs.
efficiency tradeoff. Depending on the desired IoU value of δ, the value of β may
be adjusted accordingly. A value of β = δ + 0.05 achieves high accuracy across
all desired δ. As shown in Table 1, changes in β have minimal effect on runtime.

10 C. Lawrence Zitnick and Piotr Dollár

Fig. 4. A comparison of various variants of our approach. (a) The detection rate when
varying the parameter α that varies the density of the sampling rate (default α = 0.65).
(b) Results while varying the parameter β controlling the NMS threshold (default
β = 0.75). (c) The detection accuracy when various stages are removed from the
algorithm, including the removal of edges in the inner box, the bounding box loca-
tion refinement, and the removal of the contours that overlap the box’s boundaries.
(d) Detection accuracy when different edge detectors are used, including single-scale
Structured Edges [16] (default), multi-scale Structure Edges, and a fast variant that
runs at 10 fps without the edge sharpening enhancement introduced in [19]. Results
using the Canny edge detector [28] with varying amounts of blur are also shown.

Three useful variants of our algorithm are shown in Table 1; Edge Boxes 50,
Edge Boxes 70, and Edge Boxes 90 that have settings for α and β adjusted for
IoU thresholds of δ = 0.5, 0.7 and 0.9 respectively. For higher IoU thresholds
that require extremely tight bounding boxes, α must be adjusted to search more
densely resulting in longer runtimes. Otherwise, α may be kept fixed.

Our second set of experiments tests several variants of the algorithm, Figure
4(c, d). For these experiments we set δ to an intermediate value of 0.7 and show
detection rates when varying the number of object proposals. The primary con-
tribution of our paper is that contours that overlap the bounding box’s boundary
should be removed when computing the box’s score. Figure 4 shows that if these
contours are not removed a significant drop in accuracy is observed. To gain
intuition into the effect of the contour removal on the score, we illustrate the
score computed with and without contour removal in Figure 3. With contour

Edge Boxes: Locating Object Proposals from Edges 11

Table 1. Accuracy measures and runtimes for three variants of our algorithm: Edge
Boxes 50, Edge Boxes 70 and Edge Boxes 90. Accuracy measures include Area Under
the Curve (AUC) and proposal recall at 1000 proposals. Parameter values for α and β
are shown. All other parameters are held constant.

removal the scores have strong peaks around clusters of edges that are more
likely to form objects given the current box’s size. Notice the strong peak with
contour removal in the bottom left-hand corner corresponding to the van. When
contours are not removed strong responses are observed everywhere.

If the center edges are not removed, using hb instead of hinb , a small drop
in accuracy is found. Not performing box location refinement results in a more
significant drop in accuracy. The quality of the initial edge detector is also im-
portant, Figure 4(d). If the initial edge map is generated using gradient-based
Canny edges [28] with varying blur instead of Structured Edges [16] the results
degrade. If multi-scale Structured Edges are computed instead of single-scale
edges there is a minimal gain in accuracy. Since single-scale edges can be com-
puted more efficiently we use single-scale edges for all remaining experiments.
The runtime of our baseline approach which utilizes single-scale edges is 0.25s.

If near real-time performance is desired, the parameters of the algorithm
may be adjusted to return up to 1000 boxes with only a minor loss in accuracy.
Specifically, we can reduce α to 0.625, and increase the threshold used to de-
termine which boxes to refine from 0.01 to 0.02. Finally, if we also disable the
sharpening enhancement of the Structured Edge detector [19], the runtime of
our algorithm is 0.09s. As shown in Figure 4(d), this variant, called Edge Boxes
Fast, has nearly identical results when returning fewer than 1000 boxes.

4.2 Comparison with state-of-the-art

We compare our Edge Boxes algorithm against numerous state-of-the-art algo-
rithms summarized in Table 2. Results of all competing methods were provided
by Hosang et al. [26] in a standardized format. Figure 5 (top) shows the de-
tection rates when varying the number of object proposals for different IoU
thresholds. For each plot, we update our parameters based on the desired value
of δ using the parameters in Table 1. Edge Boxes performs well across all IoU
values and for both a small and large number of candidates. Selective Search [5]
achieves competitive accuracy, especially at higher IoU values and larger number
of boxes. CPMC [6] generates high quality proposals but produces relatively few
candidates and is thus unable to achieve high recall. BING [11], which is very
fast, generates only very loosely fitting proposals and hence is only competi-

12 C. Lawrence Zitnick and Piotr Dollár

Fig. 5. Comparison of Edge Boxes to various state-of-the-algorithms, including Ob-
jectness [4], Selective Search [5], Randomized Prim’s [8] and Rahtu [7]. The variations
of our algorithm are tested using δ = 0.5, 0.7 and 0.9 indicated by Edge Boxes 50, Edge
Boxes 70 and Edge Boxes 90. (top) The detection rate vs. the number of bounding box
proposals for various intersection over union thresholds. (bottom) The detection rate
vs. intersection over union for various numbers of object proposals.

tive at low IoU. In contrast our approach achieves good results across a variety
of IoU thresholds and quantity of object proposals. In fact, as shown in Table
2, to achieve a recall of 75% with an IoU of 0.7 requires 800 proposals using
Edge Boxes, 1400 proposals using Selective Search, and 3000 using Randomized
Prim’s. No other methods achieve 75% recall using even 5000 proposals. Edge
Boxes also achieves a significantly higher maximum recall (87%) and Area Under
the Curve (AUC = 0.46) as compared to all approaches except Selective Search.

Figure 5 (bottom) shows the detection rate when varying the IoU threshold
for different numbers of proposals. Similar to Figure 4(a,b), these plots demon-
strate that setting parameters based on δ, the desired IoU threshold, leads to
good performance. No single algorithm or set of parameters is capable of achiev-
ing superior performance across all IoU thresholds. However, Edge Boxes 70
performs well over a wide range of IoU thresholds that are typically desired in
practice (IoU between 0.5 and 0.8, Figure 2). Segmentation based methods along
with Edge Boxes 90 perform best at very high IoU values.

We compare the runtime and summary statistics of our approach to other
methods in Table 2. The runtimes for Edge Boxes includes the 0.1 seconds needed

Edge Boxes: Locating Object Proposals from Edges 13

AUC N@25% N@50% N@75% Recall Time

BING [11] .20 292 – – 29% .2s

Rantalankila [10] .23 184 584 – 68% 10s

Objectness [4] .27 27 – – 39% 3s

Rand. Prim’s [8] .35 42 349 3023 80% 1s

Rahtu [7] .37 29 307 – 70% 3s

Selective Search [5] .40 28 199 1434 87% 10s

CPMC [6] .41 15 111 – 65% 250s

Edge boxes 70 .46 12 108 800 87% .25s

Table 2. Results for our approach, Edge Boxes 70, compared to other methods for
IoU threshold of 0.7. Methods are sorted by increasing Area Under the Curve (AUC).
Additional metrics include the number of proposals needed to achieve 25%, 50% and
75% recall and the maximum recall using 5000 boxes. Edge Boxes is best or near best
under every metric. All method runtimes were obtained from [26].

to compute the initial edges. Table 2 shows that our approach is significantly
faster and more accurate than previous approaches. The only methods with
comparable accuracy are Selective Search and CPMC, but these are considerably
slower. The only method with comparable speed is BING, but BING has the
worst accuracy of all evaluated methods at IoU of 0.7.

Finally, qualitative results are shown in Figure 6. Many of the errors occur
with small or heavily occluded objects in the background of the images.

5 Discussion

In this paper we propose an effective method for finding object proposals in
images that relies on one simple observation: the number of edges that are wholly
enclosed by a bounding box is indicative of the likelihood of the box containing
an object. We describe a straightforward scoring function that computes the
weighted sum of the edge strengths within a box minus those that are part of
a contour that straddles the box’s boundary. Using efficient data structures and
smart search strategies we can find object proposals rapidly. Results show both
improved accuracy and increased efficiency over the state of the art.

One interesting direction for future work is using the edges to help generate
segmentation proposals in addition to the bounding box proposals for objects.
Many edges are removed when scoring a candidate bounding box; the location
of these suppressed edges could provide useful information in generating seg-
mentations. Finally we will work with Hosang at al. to add Edge Boxes to their
recent survey and evaluation of object proposal methods [26] and we also hope
to evaluate our proposals coupled with state-of-the-art object detectors [13].

Source code for Edge Boxes will be made available online.

14 C. Lawrence Zitnick and Piotr Dollár

Fig. 6. Qualitative examples of our object proposals. Blue bounding boxes are the
closest produced object proposals to each ground truth bounding box. Ground truth
bounding boxes are shown in green and red, with green indicating an object was found
and red indicating the object was not found. An IoU threshold of 0.7 was used to
determine correctness for all examples. Results are shown for Edge Boxes 70 with 1,000
object proposals. At this setting our approach returns over 75% of object locations.

References

1. Viola, P.A., Jones, M.J.: Robust real-time face detection. IJCV 57(2) (2004)
137–154

2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. (2005)

3. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. PAMI 32(9) (2010) 1627–1645

4. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows.
PAMI 34(11) (2012)

5. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective
search for object recognition. IJCV (2013)

Edge Boxes: Locating Object Proposals from Edges 15

6. Carreira, J., Sminchisescu, C.: Cpmc: Automatic object segmentation using con-
strained parametric min-cuts. PAMI 34(7) (2012)

7. Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object
detection cascade. In: ICCV. (2011)

8. Manen, S., Guillaumin, M., Van Gool, L., Leuven, K.: Prime object proposals with
randomized prims algorithm. In: ICCV. (2013)

9. Endres, I., Hoiem, D.: Category-independent object proposals with diverse ranking.
PAMI (2014)

10. Rantalankila, P., Kannala, J., Rahtu, E.: Generating object segmentation proposals
using global and local search. In: CVPR. (2014)

11. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: Binarized normed gradients
for objectness estimation at 300fps. In: CVPR. (2014)

12. Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. In:
ICCV. (2013)

13. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: CVPR. (2014)

14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. (2009)

15. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. IJCV 88(2) (2010) 303–338

16. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV.
(2013)

17. Marr, D.: Vision: A computational investigation into the human representation
and processing of visual information. Inc., New York, NY (1982)

18. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Transactions
Graphics 31(4) (2012)

19. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. CoRR
abs/1406.5549 (2014)

20. Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their ap-
pearance. In: ECCV. (2010)

21. Siva, P., Xiang, T.: Weakly supervised object detector learning with model drift
detection. In: ICCV. (2011)

22. Gu, C., Lim, J.J., Arbeláez, P., Malik, J.: Recognition using regions. In: CVPR.
(2009)

23. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In:
ICCV. (2005)

24. Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using multiple
segmentations to discover objects and their extent in image collections. In: CVPR.
(2006)

25. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple
segmentations. In: BMVC. (2007)

26. Hosang, J., Benenson, R., Schiele, B.: How good are detection proposals, really?
In: BMVC. (2014)

27. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
IJCV 59(2) (2004)

28. Canny, J.: A computational approach to edge detection. PAMI (6) (1986) 679–698

