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ABSTRACT
Viewport adaptive streaming is emerging as a promising way to
deliver high quality 360-degree video. It is still a critical issue to pre-
dict user’s viewpoint and deliver partial video within the viewport.
Current widely-used motion-based or content-saliency methods
have low precision, especially for long-term prediction. In this pa-
per, benefiting from data-driven learning, we propose a Cross-user
Learning based System (CLS) to improve the precision of viewport
prediction. Since users have similar region-of-interest (ROI) when
watching a same video, it is possible to exploit cross-users’ ROI
behavior to predict viewport. We use a machine learning algorithm
to group users according to historical fixations, and predict the
viewing probability by the class. Additionally, we present a QoE-
driven rate allocation to minimize the expected streaming distortion
under bandwidth constraint, and give a Multiple-Choice Knapsack
solution. Experiments demonstrate that CLS provides 2dB quality
improvement than full-image streaming and 1.5 dB quality improve-
ment than linear regression (LR) method. On average, the precision
of viewpoint prediction improve 15% compared with LR.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-
centered computing → Virtual reality;
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1 INTRODUCTION
In recent years, many video service providers roll out 360-degree
video which provide immersive experience to users [2]. While con-
suming 360-degree video, users can change their viewpoint, result-
ing in an interactive experience than consuming traditional video
with a fixed viewing direction. However, 360-degree video’s high
resolution and bitrates demand hinder their wide spread over the
Internet.

The streaming of 360-degree video is currently deployed in a
naive way by simply streaming the entire 360-degree view in con-
stant quality. However, only a portion of the video is viewed by
the user at a specific time. As a consequence, transmitting entire
360-degree view results in inevitable waste of bandwidth and com-
putational resources. Due to the prevalently use of HTTP-based
adaptive streaming (standardized as DASH [19]), viewport-adaptive
streaming [8] is regarded as a promising way to deliver 360-degree
video through the Internet. One realization is tile-based stream-
ing framework [4, 10, 13, 16, 18, 21]. In tile-based streaming, each
temporal video segment is composed by several spatial tiles which
can be independently encoded/decoded. It performs in such way
that high quality is preserved within the tiles cover user’s viewport
while other tiles are delivered in low quality.

In video streaming, the client needs to buffer some amount of
video to ensure continuous playback. Therefore, existing methods
typically suggest to pre-fetch video segments by predicting the
user’s future viewport. The viewport prediction algorithms can
be categorized into two classes: 1) single-user based algorithms
[12, 13, 21] and 2) content-based algorithms [6]. However, they
have key limitations:
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• Single-user based algorithms only consider the single user’s
head motion and is unaware of the video content. As a result,
the viewport prediction could easily be biased when predict-
ing long-term future (e.g predicting user’s viewport in future
5 second) [13]. Moreover, predictions could be inaccurate if
the video content has large variation.
• Content-based algorithms apply traditional saliency or ob-
ject detection algorithms on 360-degree videos to find ROI on
content. However, these algorithms are high-computational
and have relatively poor accuracy. This is because predicting
ROI on 360-degree video is inherently different and more
challenging compared to planer video.

To address the above concerns, our key intuition is to leverage
the advantage of data-driven analysis of cross-user behavior and
machine learning techniques to determine the viewing probabilities
of tiles. We first conduct user study from user behavior. Our user
study indicates that 1) most users are drawn to similar ROI on
360-degree content. 2) There may have multiple ROI in a video.

Building on the above observations, we have designed a Cross-
user Learning based System (CLS) for viewport-adaptive 360-degree
video streaming. On the server side, it first do user fixation clustering
to group users with similar viewing behavior. The users in same
class watch similar video content. Then, the server computes the
viewing probabilities of tiles for each class. For a new session, at
each adaption step, the client first predicts the user’s class according
to this user’s history fixations and obtain the corresponding viewing
probabilities of tiles. Then, a QoE-driven rate allocation algorithm
computes the best quality level for each tile considering network
condition and object quality.

While details are presented in the paper, some highlights for our
contributions include the followings:

• A user study under a real 360-degree video viewing behavior
dataset is conducted. Benefiting from data-driven analysis,
we find some key observations and give explanations.
• We propose a cross-user learning based viewport prediction
algorithm. It can grab effective content-related information
to some extent without using pixel-wise analyzing.
• Wepresent a QoE-driven rate allocation problem tominimize
the expectation of distortion under the bandwidth constraint
which can be solved as a Multiple-Choice Knapsack problem.
• Extensive experiments are carried out on real-world Internet
and user head movement trajectories. The results demon-
strate that CLS achieves the highest video quality compared
with the state-of-art methods.

The rest of this paper is organized as follows. Section II sur-
veys related works on 360-degree video streaming and analysis
the key limitations of these methods. In Section III, we conduct
fixation user study and analysis the result. Then, based on the key
observations in user study, we present the design of CLS in Section
IV. Performance evaluation and comparison are presented in Sec-
tion V. Finally, Section VI concludes the paper and outlines future
directions.
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Figure 2: Limitations of single-user based viewport predic-
tion.
2 BACKGROUND AND RELATEDWORK
2.1 Tile-based 360-degree Streaming
In traditional HTTP-based adaptive streaming, a video is temporally
partitioned into segments. To support viewport-adaptive streaming,
video segments are further spatially divided into tiles, so that each
temporal segment is composed by several spatial tiles. Since the
client needs to buffer some amount of video to ensure continuous
playback, it is necessary to pre-fetch video segments according to
the result of viewport prediction. Viewport prediction can decide
which tiles cover the user’s future viewport in an absolute man-
ner [13] or in a probability manner [21]. Then, rate allocation is
responsible to select the quality level of tiles considering the view-
port prediction and the estimated available bandwidth. As video
segments are downloaded, the 360-degree video is rendered onto
the screen of Head Mounted Display (HMD) using graphic engine.

Apart from tile-based streaming, Scalable Video Coding (SVC)
based streaming [11] and asymmetric projection based streaming
are the alternative strategies to achieve viewport adaptivity. The
former can improve the video quality in viewport by requesting
enhancement layers. The later uses asymmetric projection, e.g.
Truncated Pyramid Projection [7], where the quality is decreased
apart from the viewpoint.

2.2 Viewport Prediction
Currently, the viewport prediction algorithms can be categorized
into two classes: single-user based and content based. Single-user
based algorithms predict the future viewport according to the user’s
history fixations. Qian [13] and Stefano [12] use Linear Regression
model to predict viewport. Lan [21] proposes a probabilistic model
considering the prediction error follows Gaussian Distribution.

The first problem of existing viewport prediction algorithms
is that these algorithms only consider the single-user’s historical
motion and consider it as a linear motion. As a result, the viewport
prediction accuracy can be easily biased when predicting long-term
future. Fig. 2(a) shows a trace-driven evaluation to highlight the
prediction precision under different prediction time. We consider
the linear regression model to evaluate. It uses history fixations in
one second to predict the user’s viewport in future 1 to 5 seconds.
We see that the prediction precision drops heavily when predicting
the viewport in future 2 seconds .

Another problem is that these algorithms are unaware of the
video content. Hence, predictions could be inaccurate if the video
content has large variation (e.g. motion-fast video, scene cut). To
evaluate the impact of different kinds of content, we consider four
videos in the dataset [20]. The former two videos contain motion-
fast scene while the later two videos are relatively static. Fig. 2(b)
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Figure 3: Heapmaps of the collective visibility.

shows the viewport prediction precision of these videos. We can
conclude that the precision of single-user based algorithm highly
related to video content.

For the content based prediction algorithm [6], the authors use
saliency detection [3] and neural network to understand the ROI on
content. However, predicting ROI on 360-degree video is inherently
different and more challenging compared to planer video, since the
360-degree video is omnidirectional. Besides, it can not meet the
real-time requirements in video streaming. Instead, we dig into the
viewing behavior across users to understand video content.

3 FIXATION USER STUDY
With the increasing popularity of 360-degree videos, understanding
user viewing behaviors in virtual environment is important for im-
proving user experience. We conduct a user study to systematically
analysis the viewing behavior of users when watching 360-degree
videos.

3.1 Setup
Our user study is conducted on the VR dataset [20]. It contains
18 videos which are selected to represent the most popular video
categories of current 360-degree contents and cover a wide range of
scenarios, e.g. performance, sport, landscape, etc. 48 participants are
involved in the experiments and their head motions are recorded
during the video playback, including rotations and positions.

The primary task of the user study is to report the viewing be-
havior on the global view of all users. In tile-based video streaming,
the adaptation granularity is tile. In this work, we fix the tiling
setting and focus on the user viewing behavior. The same as [21],
each video segment is divided into 6 rows and 12 columns (72 tiles).
The viewport is considered with a 90-degree field of view (FOV)
which is a common setting of HMD.

3.2 Methodology
The head movement is tracked on Unity 3D platform, in which the
unit quaternion is recorded. The unit quaternion represents the
rotations of an objects in 3D space. A unit vector (x ,y, z) represents
which direction a participant is looking at, i.e. fixation, can be
calculated from the unit quaternion [20]. Then, the viewport has a
limited FOV with center (x ,y, z) and is modeled as a plane segment
tangential to the sphere.

At a specific time, the tile visibility vector of a user u is defined as
vu which is a 0-1 vector. Specifically, vu,i = 1 represents that the
i-th tile is viewed by user u, otherwise the tile is not viewed by the
user. Forward Projection [22] is used to calculate the tile visibility
vector. To see the viewing behavior on the global view of all users,
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Figure 4: CCDF of collective visibility.

(a) Frame 1: One ROI in the content (b) Frame 2: Multiple ROIs in the con-
tent

Figure 5: User fixations on two video frames. Yellow region
means high density of user fixationswhile blue regionmean
low density of user fixations.

we define the collective visibility of a tile, i.e. v̄i , as the fraction of
users who view the tile. It is calculated as v̄i =

∑
u∈U vu,i
|U | , whereU

is the set of all users.

3.3 Collective Tile Visibility Result
Fig. 3 shows the collective visibility of tiles of two videos. The
row is the video playback time and the column is the tile index
which is ranked according to the collective visibility. During 200 to
240 seconds of the first video, 12 tiles have a collective fixation
of over 0.9. In other words, 90% of the users watch these tiles
during this time. The second heatmap in Fig. 3 is calculated from a
motion-fast video. We can still observe similar results. Fig. 4 shows
the Complementary Cumulative Distribution Function (CCDF) of
collective visibility of the first video. Each point represents the
percentage of tiles with at least a certain collective visibility value.
For example, the graph shows that only 10% tiles have a collective
visibility higher than 0.8 and 50% tiles have a collective visibility less
than 0.1. It indicates that 10% tiles are watched by 80% users and 50%
of the tiles are viewed by less than 10% of the users. Therefore, our
key takeway is: several tiles have high collective visibility and there
is a significant number of regions that are relatively unimportant
to the users.

3.4 Fixation Clustering Result
We have observed that users have similar ROI when watching same
360-degree video (§3.3). Obviously, if all users watch similar con-
tent, the server can just find these tiles according to the collective
visibility and stream these tiles to the client at high quality level.

However, users have their own preference when watching 360-
degree videos. This phenomenon is also ubiquitous in 360-degree
video. To see whether users have different preferences when watch-
ing 360-degree videos, we conduct experiments to study the cluster-
ing of users fixations. Fig. 5 show the user fixations on two frame
of video skiing. Yellow region means high density of user fixations
while blue region means low density of user fixations. In Fig. 5(a),
a man is skiing and dragged by a sledge. Therefore, there is one
obvious ROI and almost all users focus on that region. In Fig. 5(b), a
man is skiing down from the high hill and several people are skiing
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Figure 6: Diagram of CLS architecture.

down to the low hill. Therefore, the user fixations are separated
into two groups according to their own preference on content.

Consider the observation from §3.3, all users share the same tiles’
weights, i.e. tile viewing probabilities, may result in quality decrease
in the multi-ROIs case. For example, in the situation shown in Fig.
5(b), the tiles cover the two ROIs will be assigned high weights than
other tiles. However, the tiles in the left ROI are unimportant to
the users in the right cluster. If we can predict which cluster a user
belongs to, the client can assign high bitrate to the tiles with high
collective visibility in that cluster. Hence, the video quality can be
improved.

4 SYSTEM DESIGN
To breakthrough the limitations of using single-user based viewport
prediction in 360-degree streaming systems, we observe a key ROI-
aware insight from cross-user fixation analysis that enables us to
address the challenges in viewport prediction. In this section, we
present the design of CLS which is built upon this insight.

4.1 System Overview
The system architecture is shown in Fig. 6. To achieve cross-user
based learning, the client sends the measured features, including
user fixation and the corresponding video playback timestamp to
the server. At the server, the Cross-user Learning Module is respon-
sible for supporting viewport prediction. Specifically, in order to
find ROI(s) in each video segment, the user fixations are used to
group users into class(es). For users in same class, since they watch
similar content, they have same viewing probabilities of tiles. The
detail about the CLS algorithm is shown in §5.1.

When a new session comes in, it first requests for video manifest
file (e.g. MPD) to obtain the information about the video, including
the 1) pre-learned models and viewing probability for supporting
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Figure 7: Illustration of cross-user learning based viewport
prediction.

viewport prediction; 2) quality and bitrate for each tile for support-
ing rate allocation. At each adaptation step, the client first predicts
the user’s class to estimate the user’s preference on the requested
video segment. Then, the client obtains the viewing probability
that belongs to the class. At last, the client determines the quality
level for each tile according to the QoE-driven rate allocation. The
details about the QoE-driven rate allocation are presented in §5.3.

The new session also reports the measured features to the server.
When the server receives the feedback data, it again updates the
Cross-user Learning Module using the new features.

5 CLS ALGORITHM
5.1 Cross-user based Learning
At the server side, the Cross-user Learning based Module is used
to support client side viewport prediction. It is decoupled into two
parts: a user fixation clustering logic to partition users into class(es)
according to their preference on content and a user classification
logic to predict a user’s future class, i.e. which ROI he/she will
interest in the future. We implement the Cross-user Learning based
Module with Scikit-learn [1] which is a machine learning library
in Python.

5.1.1 User Fixation Clustering. The user fixation clustering is
done by server using old sessions’ feedback data. We denote that
the fixation coordinates of user u at specific time t as (xu ,yu , zu ),
a unit vector represents which direction a user is looking at. We
assume that users maintain his/her fixation within a small time
interval. Therefore, the granularity of user clustering is the same
as segment duration, e.g. one second. Since fixation coordinate is
spatial data with noise and the number of cluster(s) can vary in each
clustering interval, we use the density based clustering algorithm
DBSCAN [5] to group users. Given the set of users’ fixations on one
video segment, DBSCAN can group together the users’ fixation that
are closely packed together, i.e. fixations that have enough nearby
neighbors are grouped together as a class. It starts by deciding a
core fixation and the fixations that are reachable1 from the core
fixation are grouped into the same class. The fixation is a noise point
if it is non-reachable by the points in each class. We use Euclidean
distance as the distance function. For example, as shown in Fig.
7, each point is the user fixation on one segment of 360-degree
video. The users can be clustered into two classes according to
their fixations. It also reveals that there are two ROIs in this video

1Two points are reachable if 1) the distance between the two points is less than ε or
2) there is a path between the two points satisfies that the distance of any adjacent
points is less than ε .
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segment. The clustering result of user u is denoted as cu ∈ [0,C],
where C is the number of cluster(s). Specifically, cu = 0 represents
the user is treated as noise.

After user clustering, the viewing probability of each tile is de-
termined within each class of users. Fig. 7 illustrates the viewing
probability of two classes in a 4 × 4 tilling manner as an example.
Specifically, it is calculated from collective visibility. We denote the
set of users in a specific class α as Uα . Therefore, the collective
visibility for i-th tile for class α is calculated as:

v̄α,i =

∑
u ∈Uα vu,i

|Uα |
. (1)

We denote the viewing probability of i-th tile for class α as pα,i . It is
calculated as the normalized result of the corresponding collective
visibility:

pα,i =
v̄α,i∑
i v̄α,i

. (2)

5.1.2 User Classification. For the client, it will pre-fetch video
segments from sever according to the viewport prediction result.
However, the client is unconscious about the user’s future class,
which is crucial in viewport prediction. Hence, the client needs
to predict the user’s class to obtain the corresponding viewing
probabilities of tiles. To support this, the server trains model using
machine learning. Specifically, for predicting user’s class at video
playback time t , it uses the user clustering result at playback time t
as ground-truth and the user fixations in time window ∆t = [t −
Bmax −δ , t −Bmax] as features, where Bmax is the buffer length and
δ is the window size in time. We use (t − Bmax) as the upper bound
of the window since the maximum length of video that client can
store in the playback buffer is Bmax. Thus, the maximum prediction
time horizon is Bmax. We use Support Vector Machine (SVM) [9] as
the class prediction method. Noting that other prediction methods
can be used in our task as well, SVM is a a widely used method
with enough high performance and low computation.

5.2 Viewport Prediction
At the beginning of 360-degree video session, the client first down-
loads the pre-trained model and the viewing probabilities of tiles
for each class from the server to support the viewport prediction
during video playback. In each adaptation interval, the client first
predicts the user’s future class using the historical fixations as fea-
tures. Then, the client obtains the viewing probabilities of tiles
correspond to the predicted user class.

5.3 QoE-driven Rate Adaptation
To provide high QoE, we propose the rate allocation of tiles as a
QoE-driven optimization problem. We define the number of tiles
in one segment as N and the number of bitrate versions asM . At
each adaptation step, the bitrate of i-th tile at j-th quality level has
a bitrate ri, j and a spherical quality distortion di, j which can be
obtained from manifest files. We define the optimal quality level for
i-th tile as li . To be simplified, we use pi to represent the viewing
probability of a specific predicted class. Therefore, at each adap-
tation step, the client needs to solve the following optimization

Algorithm 1 QoE-driven Rate Allocation Algorithm.
Input: Throughput bound, BW ; Number of tiles, N ; Number of

rates,M ; Rate set, {ri, j }; Tile weights, {pi }; Distortion set, {di, j };
Output: Allocation rate levels set, {li };
1: ∀i , appoints li = 1;
2: Update the remaining throughput BW ′ = BW −

∑
i ri,1;

3: Update the rate set by {r ′i, j = ri, j − ri,1};
4: Update the distortion set by {d ′i, j = pi (di,1 − di, j )};
5: Initialize knapsack revenue table K ∈ R(N+1)×BW ′

by 0;
6: Construct the prefix table P ∈ Z(N+1)×BW ′

;
7: for i from 1 to N do
8: for bw ∈ [0,BW ′] do
9: Ki,bw = maxj ∈[1,M]{Ki−1,bw−r ′i−1, j

+ d ′i−1, j };
10: Pi,bw = arg maxj ∈[1,M]{Pi−1,bw−ri−1, j + d

′
i−1, j };

11: end for
12: end for
13: Find ˆBW = arg maxbw ∈[0,BW ′]{KN ,bw };
14: for i from N to 1 do
15: li = Pi, ˆBW ;
16: ˆBW = ˆBW − r ′i,li ;
17: end for
18: return {li }

problem to obtain the optimal quality level for each tile:

min
li ∈[1,M],∀i

N∑
i=1

pi · di,li

s.t.
N∑
i=1

ri,li ≤ BW .

(3)

The constraint in the optimization problem restricts the total
bitrate of tiles. To avoid playback interrupts, we set a transmis-
sion bitrate budget BW which is calculated from buffer based rate
adaptation algorithm [21]. Besides, to avoid blank block in user’s
viewport, the tiles will be assigned at least the lowest quality level.

This optimization problem can be solved as a Multiple-Choice
Knapsack problem [17]. A brute force search which exhaustively
evaluates all combinations guarantees an optimal solution. How-
ever, the computational complexity is O (NM ). To reduce the com-
putation time, we use algorithm 1 to solve the problem where the
computational complexity is O (BW · N ).

6 PERFORMANCE EVALUATION
To evaluate the performance of CLS, we carry out extensive real-
world Internet experiments using user head movement trajectories.

360。

ServerClient

Dummynet
Traffic Shaper

Head Movement
Trajectory

Figure 8: Network topology
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Figure 9: CDF of viewport prediction precision of different prediction time horizons.
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Figure 10: Viewport prediction of three videos under different user fixation variance.

6.1 Setup Table 1: Video Information
No. Content Length Category
1 Conan360◦- Sandwich 2’44” Performance
2 Freestyle Skiing 3’21” Sport
3 Google Spotlight - HELP 4’53” Film

Fig. 8 shows the network topology in the experiment, which
consists of a client and a server. We also throttle the bandwidth
using Dummynet [15] in order to emulate different bandwidth
settings. Head movement trajectories are embedded into the client
to imitate the head motion when user watches 360-degree videos.

In the experiments, we choose three videos in different types
from the VR dataset [20]. The information of these video is shown
in Table 1. We set the duration of one video segment as 1 second.
We adopt the 6 × 12 (rows × columns) tiling pattern for each video
segment, thus the number of tiles is 72 (N = 72). To generate dif-
ferent quality videos, we use quantization parameter (QP) ranging
from 22 to 42 in steps of five leading to five different bitrate ver-
sions. The perceptual quality distortion of each tile is calculated
using Spherical MSE which is the value to further calculate view-
port PSNR (V-PSNR) [22]. The length of playback buffer is set to 5
seconds. In the Cross-user based Learning Module, we randomly
select 10 percent (48 × 0.1 ≈ 5) traces for each video as validation
set and 43 traces as training set.

To validate the efficiency of cross-user based viewport prediction
in 360-degree video streaming, we select three typical streaming
methods as the comparisons:

• MONO: This approach is monolithic streaming. The naive
way by streaming the entire 360-degree scene in constant
quality without exploiting and optimizing the quality for the
user’s viewport.

• Tile-LR [13]: This tile-based streaming uses Linear Regres-
sion to predict future viewport.
• 360ProbDASH [21]: This approach use a probabilistic model
to predict viewing probabilities of tiles. It considers that the
prediction error follows a Gaussian Distribution.

Moreover, we also test the performance of our proposed method
without user classification which is referred to as CLS-1. This way,
it is possible to clearly identify the gains of user classification. The
proposed method with user classification is referred to as CLS-2.
For fair comparison, the buffer based rate adaptation [21] is used
for all methods. The proposed QoE-driven rate allocation is used
in each of the tile-based methods. The video bitrate for MONO
method is chosen at the highest bitrate less than the rate adaptation
result.

We evaluate the effectiveness of our proposed method by com-
paring with other methods in viewport prediction precision, video
quality over fixed bandwidth network and real-world Internet.

6.2 Viewport Prediction
Wefirst evaluate the viewport prediction precision of thesemethods.
Since the viewing probabilities of tiles are calculated in a normalized
manner, i.e.

∑N
i=1 pi = 1, the precision of viewport prediction is

calculated as
∑N
i=1 min{pi ,дi } where дi is the normalized ground-

truth.
Recall that the client needs to pre-fetch some video segments to

prevent playback interruption. In most adaptation steps, the client
requests the segment to fill-up playback buffer. In these cases, the
viewport prediction time horizon equals to the buffer length (5
seconds). Fig. 9(a) shows the CDF of viewport prediction precision
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(c) Bandwidth = 4000Kbps

Figure 11: Effective bitrate under different fixed bandwidth situations.
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Figure 12: V-PSNR under different fixed bandwidth situations.

when predicting user’s viewport in future 5 seconds. On an av-
erage, the CLS-2 achieves 75% prediction precision while CLS-1,
360ProbDASH and Tile-LR achieve 70%, 60% and 45% prediction
precision. At the 80th percentile, CLS-2 improves 5%, 10% and 15%
compared to CLS-1, Tile-LR and 360ProbDASH respectively. In rare
cases, when the playback buffer contains less video content, the
client should predict user’s viewport in the near future to download
the video segment. Fig. 9(b) and 9(c) show the the CDF of viewport
prediction precision when predicting user’s viewport in future 3
seconds and 1 second. At the 80th percentile, CLS-2 can achieve
85% and 90% prediction precision in prediction time horizon of 3
seconds and 1 second respectively.

According to Fig. 9, we observe that the viewport prediction pre-
cision decreases with the increase of prediction time. Such degra-
dation is noticeable in linear regression method, i.e. gray line. The
proposed method presents a high robustness in prediction time
against with others methods. This confirms that considering cross-
user behavior provides high viewport prediction than only using
single-user historical fixations.

We use the variance of user fixations to represent the fixation
centrality. A small value represents high similarity of user fixa-
tions which further implies noticeable ROI in video content. Fig.
10 shows the viewport prediction of three videos under different
user fixation variances. Each point on the figure represents the
average prediction precision of predicting the user’s viewport in
video segments that with same user fixation variance. Generally, the
viewport prediction precision decreases with the increase of user
fixation variance. It means that the viewport prediction precision
has a strong correlation with content, e.g. the viewport in video
segment with noticeable ROI is easier to predict than the segment
without noticeable ROI.

Fig. 10 illustrates that CLS-2 outperforms other prediction algo-
rithms in all cases. In Fig. 10(a) and Fig. 10(c), CLS-2 achieves 80%
prediction precision when the normalized user fixation variance is
less than 0.2. Since video 1 and video 3 are motion-less, from the
statistics, nearly 54% video segments have a user fixation variance
less than 0.2 (not shown due to space limitation). Even under the
highest user fixation variance, CLS-2 can achieve 50% prediction
precision. However, video 2 is motion-fast, we can see a large pre-
diction precision drop in Tile-LR while CLS-2 still can preform high
prediction precision.

6.3 Video Quality under Fixed Bandwidth
In 360-degree video streaming, viewport prediction influences the
bitrate allocation of tiles and perceptual quality of content in user’s
viewport. Since only a portion of the video is viewed by the user, the
perceptual quality is decided by the tiles cover the user’s viewport.
We define effective bitrate as the sum of video bitrate of tiles cover
user’s viewport. Besides, we use V-PSNR [22] to directly represent
the video quality inside the user’s viewport. To evaluate the perfor-
mance in video quality of different viewport prediction algorithms,
we first conduct Internet experiments under fixed bandwidth {2000,
3000, 4000} Kbps.

Fig. 11 shows boxplot of effective bitrate of different methods dur-
ing streaming sessions for video 1. The minimum value of whisker
(dashed line) represents the lowest effective bitrate, the red line is
the median of effective bitrate, the maximal value of whisker is the
highest effective bitrate, the box contain 50% values of effective
bitrate. When the bandwidth is low, as shown in Fig. 11(a), the
median effective bitrate is around 700kbps for the 5 methods. Since
in most adaptation steps, the client chooses the lowest quality for
each tile. When the capacity is adequate, as shown in Fig. 11(c),
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Table 2: Performance Summary
Algorithm Video 1 Video 2 Video 3

sRate (Kbps) eRate (Kbps) V-PSNR (dB) sRate (Kbps) eRate (Kbps) V-PSNR (dB) sRate (Kbps) eRate (Kbps) V-PSNR (dB)
MONO 2418.1 808.2 27.16 3458.1 1015.5 25.54 3312.5 1072.5 28.74

Tile-LR [13] 2442.5 868.2 27.44 3513.9 1035.6 25.69 3306.6 1099.4 28.85
360ProbDASH [21] 2333.1 958.1 28.12 3311.7 1177.9 25.86 3215.3 1186.1 29.39

CLS-1 2431.8 1044.3 28.40 3465.4 1396.7 26.54 3315.8 1360.3 30.61
CLS-2 2435.5 1174.3 29.10 3473.1 1468.3 27.09 3319.6 1443.9 31.12
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Figure 13: CDF of V-PSNR of three videos.

the median of effective bitrate for CLS-2 is 1650Kbps which is the
highest median value among all methods. Besisde, the box area
of CLS-2 ranges in [1500,1900] Kbps while CLS-1, 360ProbDASH,
Tile-LR and MONO range in [1450,1750] Kbps, [1250,1740] Kbps,
[1010,1320] Kbps and [1010,1300] Kbps respectively.

Fig. 12 shows the average V-PSNR of different methods dur-
ing streaming sessions for video 1. Fig. 12(b) shows that Tile-LR,
360ProbDASH, CLS-1 and CLS-2 enhance the V-PSNR by 0.9dB,
2.1dB, 3.7dB and 4dB than MONO in 3000Kbps bandwidth. This
indicates that viewport prediction can improve the perceptual qual-
ity for 360-degree video and the prediction algorithm is essential.
Overall, crossUser-2 can improve the V-PSNR by 1.5dB, 4dB and
3.8dB than MONO in 2000Kbps, 3000Kbps and 4000Kbps bandwidth
respectively.

6.4 Video Quality under Real-world Internet
To further evaluate the performance under severe network condi-
tions, we conduct a series of experiments under real-world Internet.
To make the experiment repeatable, we choose a bandwidth trace
from HSDPA dataset [14]. The videos and test user head movement
trajectories are same with experiment setup.

Fig. 13 shows the CDF of V-PSNR of different methods on three
videos. As can be seen, all methods have similar result when V-
PSNR is lower than 25 dB. We anticipate these results because these
adaptation steps suffer from low bandwidth condition, which is con-
sistent with the result in Sec 6.3. However, CLS-2 can significantly
improve the V-PSNR when the bandwidth is adequate. For example,
in Fig. 13(b), in 80th percentile, CLS-2 improves the V-PSNR by
nearly 3 dB than other methods.

Table 2 summaries the performance of different methods on
segment bitrate (sRate), effective bitrate (eRate) and V-PSNR. Since
only the tiles that cover user’s viewport are actually viewed by user,
effective bitrate is always lower than segment bitrate. We can see all
tile-basedmethods achieve higher effective bitrate and V-PSNR than
MONO. This is because tile-based viewport adaptive streaming can
optimize the quality of tiles, while traditional monolithic streaming

assigns same quality level to tiles. Meanwhile, CLS-2 outperforms
other methods in effective bitrate and V-PSNR. This is due to the
fact that CLS-2 provides an accurate viewport prediction result,
which eventually leads to a highest perceptual quality.

As can be seen in Table 2, video 2 has a lower V-PSNR than other
videos. This is because video 2 is a motion-fast video which has
a lower compression efficiency than the motion-low videos. This
implies that the perceptual video quality is influenced by video
content. On an average, CLS-2 can enhance the V-PSNR by 2dB,
1.8dB and 1.3dB than MONO, Tile-LR and 360ProbDASH over the
three videos respectively.

7 CONCLUSION
Viewport adaptive streaming is emerging as a promising way to
deliver high quality 360-degree video. In this paper, we conduct user
study under a real VR dataset. Our user study indicates that 1) most
users are drawn to similar ROI on 360-degree content. 2) the number
of ROIs varies across video content. Based on the above insights,
we propose a Cross-user Learning based System (CLS) to improve
the viewport prediction precision for tile-based 360-degree video
streaming. Specifically, we can find region-of-interest (ROI) from
cross-user behavior analysis and predict the user’s preference on
content usingmachine learning. Then, we present a QoE-driven rate
allocation problem to minimize the expectation of distortion under
the bandwidth constraint which can be solved as a Multiple-Choice
Knapsack problem. Experiments demonstrate that CLS outperforms
the state-of-art tile-based streaming methods.
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