
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348786991

STC: Enabling 16K VR streaming on mobile platforms with FoV tracking

Conference Paper · December 2020

DOI: 10.1109/GLOBECOM42002.2020.9322384

CITATIONS

0
READS

95

5 authors, including:

Some of the authors of this publication are also working on these related projects:

PanoProject View project

16K VR Video Streaming View project

Yu Guan

Peking University

15 PUBLICATIONS 86 CITATIONS

SEE PROFILE

Xinggong Zhang

Peking University

69 PUBLICATIONS 834 CITATIONS

SEE PROFILE

Zongming Guo

Yantai Nanshan University

211 PUBLICATIONS 3,523 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xinggong Zhang on 10 May 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348786991_STC_Enabling_16K_VR_streaming_on_mobile_platforms_with_FoV_tracking?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348786991_STC_Enabling_16K_VR_streaming_on_mobile_platforms_with_FoV_tracking?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PanoProject?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/16K-VR-Video-Streaming?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Guan-5?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Guan-5?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Peking_University?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yu-Guan-5?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinggong-Zhang?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinggong-Zhang?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Peking_University?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinggong-Zhang?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zongming-Guo-2?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zongming-Guo-2?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zongming-Guo-2?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinggong-Zhang?enrichId=rgreq-562bfa1723bf36c6434faedf9ea2b1c9-XXX&enrichSource=Y292ZXJQYWdlOzM0ODc4Njk5MTtBUzoxMDIxNzUzNzMyMTE2NDgxQDE2MjA2MTY0ODE1ODU%3D&el=1_x_10&_esc=publicationCoverPdf

STC: Enabling 16K VR streaming on mobile
platforms with FoV tracking

Chengyuan Zheng, Jinyu Yin, Yu Guan, Xinggong Zhang, Zongming Guo
Wangxuan Institute of Computer Technology, Peking University

Beijing, P.R. China
zhengchengyuan@pku.edu.cn, yinjinyu@pku.edu.cn, shanxigy@pku.edu.cn, zhangxg@pku.edu.cn, guozongming@pku.edu.cn

Abstract— 16K VR videos are coming to ages. But it could
overwhelm mobile hardware for its huge bandwidth consumption
and decoding complexity. To enable 16K VR video streaming
over mobile platforms, we present a novel ShiftTile-Tracking
(STC) streaming system, which crops and transmits video by
tracking the Field-of-View (FoV) movement of users. The video
chunk is split into ShiftTiles with frame granularity, which
always covers FoV areas along the FoV movement trajectory.
This transforms a 360-degree VR video into a traditional planar
video, which leads to huge bandwidth saving and faster decoding
speed. In the system design, we mainly entail two contributions.
1) To accommodate various FoV movement trajectories with
a limited number of ShiftTiles, we proposed an optimal tiling
algorithm by FoV trajectory clustering. 2) To be resilient to
the FoV prediction errors, we propose an accuracy-sensitive
streaming algorithm, which expands the FoV area if the FoV
prediction errors are high. The evaluation shows that under
the same real-world 4G network conditions, the proposed STC
improves 0.9dB V-PSNR, reduces 12.4% buffering ratio, and
achieves 45% faster decoding speed (64 frames per second)
on average compared with the state-of-the-art solutions. This
enables 16K VR video streaming on current mobile platforms.

Index Terms—Virtual Reality, Adaptive Video Streaming,
Tiling, Mobile Platforms

I. INTRODUCTION

Virtual Reality (VR) video applications are booming. Ac-
cording to a survey of quartz [1], there will be 55 million
mobile VR users in 2021, and mobile VR devices (e.g., VR
glasses [2] or head-mounted devices [3]) will account for
80% of VR platforms. However, most of today’s deployed VR
video systems only support 4K resolution, which is equivalent
to display a planar 240P video on desktops. This would make
the user suffer from VR sickness [4]. To provide a better
Quality-of-Experience (QoE), 16K VR videos (e.g., 15360 ×
7680) are required which can achieve 40 Pixel-Per-Degree
(PPD) with ultra-high-definition quality [5].

However, streaming 16K VR videos on mobile platforms is
a great challenge. It needs huge bandwidth consumption and
formidable computation resources. (1) One encoded 16K
VR video consumes around 200Mbps to 1.65Gbps bandwidth
[6], which is a huge burden even for the state-of-the-art 5G
network [7]. (2) Today’s mobile CPU can only decode 8K
(e.g., 7680×3840) videos at the most. It is hard to display
16K VR videos on mobile platforms, let alone decode them
at 60 frames per second (fps).

FoV adaptive (or called viewport adaptive) streaming is
a well-known solution to deliver VR video with less bi-

(a) Static FoV coverage

Duration of one chunk

(b) FoV tracking

Figure 1: A high-level comparison between static FoV cover-
age and FoV tracking solutions. Yellow areas are transmitted
and viewed by users and green areas are transmitted but not
viewed by users. Suppose the user is looking at the moving
football in one video chunk.

trate [8]. It first maps VR videos into equal-rectangular planar
videos [9], and then split them into grid-like tiles [10], [11]
in the spatial dimension. By FoV prediction [8], [12], one
only needs to stream the tiles overlapped with the user’s FoV,
thus significantly reduces the computation cost and bandwidth
consumption. But it is still tough to stream 16K videos with
the FoV adaptive methods since they cover FoV areas with
static grid-like tiles, which is called static FoV coverage. As
shown in Figure 1 (a), a tile will be delivered entirely even
only one frame is inside the FoV trajectory. It would lead to
severe bandwidth waste especially when FoV is moving fast.

Unlike the aforementioned methods, we try to stream VR
videos in an FoV tracking way. It crops FoV areas along FoV
movement trajectories, named ShiftTiles, which are delivered
and displayed like an ordinary 2D video. Figure 1 shows a
comparison between the FoV tracking solution and the static
FoV coverage solution. We can see that the FoV tracking
solution saves lots of pixels compared with the other. It is
equivalent to encoding and streaming one traditional 2D video
with a limited viewing angle, thus it can significantly reduce

bandwidth consumption and decoding complexity.
However, it is not trivial to design a VR streaming system

with FoV tracking. There are two technical challenges:
• Users’ FoV movement is random. There may exist thou-

sands of FoV trajectories for the same video. It is impos-
sible to prepare ShiftTiles for all possible trajectories.

• There exist FoV prediction errors. Since the ShiftTiles are
delivered by the predicted FoV trajectory, the accuracy of
FoV prediction has great impacts on streaming quality.

To explore the opportunities above, we present ShiftTile-
Tracking (STC), a novel VR video streaming system with
the FoV tracking method. It generates ShiftTiles according to
users’ FoV trajectories. STC mainly entails two contributions.
(1) To reduce the storage overhead, STC first utilizes an FoV
dataset and groups similar FoV trajectories into FoV trajectory
clusters. Then we propose a trace-driven optimization problem
to cover them with a limited number of ShiftTiles (§II).
(2) To be resilient to FoV prediction errors, we propose
an accuracy-sensitive streaming algorithm. We make a data-
driven analysis to estimate the FoV prediction accuracy. And
we expand streaming areas (e.g., more ShiftTiles) when the
FoV prediction is uncertain (§III).

The evaluation shows that under the same 4G network con-
ditions, the proposed STC improves 0.9dB V-PSNR, reduces
12.4% buffering ratio, and achieves 45% faster decoding speed
(64 frames per second) on average compared with the state-
of-the-art solutions. This enables 16K VR video streaming on
today’s mobile platforms.

The rest parts of the paper are organized as follows. We
present the optimal tiling algorithm in §II. Then to provide
robust streaming against FoV prediction errors, we introduce
an accuracy-sensitive streaming algorithm in §III. We evaluate
STC with both trace-based simulation and real-world decoding
evaluation in §IV. Finally, we summarize the paper and
conclude the evaluation results in §V.

II. SHIFTTILING

In this section, we present how we use a limited number
of ShiftTiles, which crops FoV areas along FoV movement
trajectories, to ensure every possible FoV trajectory can be
covered. We found that FoV trajectories of different users
have a strong similarity and we cluster the similar historic
FoV trajectories (§II-A). Then we design the ShiftTile and
StaticTile, and we establish a tiling optimizing problem to
obtain the best parameter settings for them (§II-B).

A. FoV trajectories clustering

We cluster the users’ FoV trajectories into a limited number
of clusters according to the distance between them during
one video chunk. Without clustering, the server needs to
encode one specific video for each user’s FoV trajectory,
which will lead to severe computation and storage overhead.
Besides, lots of previous studies [11], [12] have proved the
FoV trajectory similarities between users in the same video
event (e.g., playing basketball and skating).

(a) Calculating IoU of two FoVs
Cluster 1 Cluster 2

FoV
trajectory

IoU distance

medoid

(b) K-medoids clustering

Figure 2: A sketch graph of FoV trajectory clustering

First, we define the Intersection-over-Union [13] (IoU)
distance DIoU between two FoVs in each frame. Figure 2
(a) shows a sketch graph of IoU between two FoVs. FoV k

i

and FoV k
j denote the FoVs from the ith user and jth user

in the kth frame correspondingly. Therefore the IoU distance
DIoU between FoV k

i and FoV k
j can be expressed as

DIoU

(
FoV k

i , FoV k
j

)
= 1−

area(FoV k
i) ∩ area(FoV k

j)

area(FoV k
i) ∪ area(FoV k

j)

(1)

Second, we define the trajectory distance Dtra between
two FoV trajectories during one video chunk (e.g., 60 frames
each chunk). Dtra is the average DIoU each frame between
two FoV trajectories in the whole video chunk, whose frame
number is f . trai and traj are the FoV trajectories from the
ith and jth users. FoV k

i and FoV k
j denote the FoVs in the

kth frame from trai and traj . Thus we obtain the trajectory
distance Dtra between trai and traj as

Dtra (trai, traj) =

∑f
k=1 DIoU

(
FoV k

i , FoV k
j

)
f

(2)

Third, K-medoids [14] algorithm is applied to cluster all
the FoV trajectories based on the Dtra. Figure 2 (b) shows a
sketch graph of K-medoids FoV trajectories clustering.

B. Optimal ShiftTiling of clustered FoV trajectories

Given a proper clustering algorithm, then we require an
appropriate tiling method. The straightforward thinking is
encoding the areas of all FoV trajectories in this cluster to-
gether into a ShiftTile. However, this is inefficient in practice,
because this area is still 1.5× to 4× larger than a single user’s
FoV. Transferring this area to a user will lead to a serious
waste of bandwidth.

To avoid this bandwidth waste, given an FoV trajectory
cluster, we set a popularity threshold Ln for the nth FoV
trajectory cluster. In this cluster, only the pixels viewed by
more than Ln historic users will be encoded into one ShiftTile.

Obviously, the ShiftTile is not necessary to cover all historic
FoV trajectories, and also there is no guarantee that they can
match all users in the future. When a user’s FoV trajectory

Frame 1

Frame 30

Figure 3: An example of how StaticTiles and ShiftTiles
together cover a moving FoV trajectory. The yellow areas
are transmitted and viewed by users and the green areas are
transmitted but not viewed by users. The bounding box with
solid lines means the ShiftTile and that with dotted line means
the StaticTile.

can not be covered by any of the encoded ShiftTiles, there
will be a serious depression of Quality-of-Experience (QoE).

To solve the problem, we encode each video chunk into
X × Y equal-sized static rectangular tiles as the supplement
of ShiftTile. We call it StaticTile in this paper. X and Y are
parameters of the StaticTiles granularity (e.g., 6×12, 12×24).
If the user’s FoV trajectory can be fully covered by one
ShiftTile, we allocate the ShiftTile to her. Otherwise, we
allocate a ShiftTile and some supplemental StaticTiles to her
to guarantee the full coverage of her FoV trajectory. Figure 3
shows an example of how ShiftTiles and StaticTiles cover a
user’s moving FoV together.

Given that we first encode the video chunk into several
ShiftTiles (the number is equal to the number of trajectory
clusters) and then we encode the video chunk again into fine-
grained StaticTiles as a supplement, how to put them together
and make the best parameter settings is a problem. In the
parameter setting, there are two important trade-offs.

The size of ShiftTiles. When we decrease the value of Ln,
the ShiftTile will be larger, thus we need fewer StaticTiles to
cover the remaining FoV. However, if the ShiftTile is too large,
it may contain more areas outsides the user’s FoV, leading to
a waste of bandwidth.

The granularity of StaticTiles. It is well studied that
when we spatially split a video chunk with fine granularity, it
significantly lowers the encoding efficiency (e.g., the total size
of tiles will be much larger than the original video chunk).
On the other hand, when we split a video chunk with coarse
granularity, it leads to a waste of bandwidth: (1) It may have
more overlap with the ShiftTile. (2) It may contain more areas
outsides the user’s actual FoV.

Our goal is to cover the user’s FoV trajectory by ShiftTiles
and StaticTiles with minimal expected bandwidth consump-
tion. Given a video chunk, assume that we have clustered
the FoV trajectories into K clusters, and Tn(Ln) denotes
the ShiftTile of the nth cluster with popularity threshold
Ln (as described above, one trajectory cluster with a pop-
ularity threshold uniquely defines a ShiftTile). (X,Y) is the

granularity of StaticTiles. Then we optimize the parameters
< L1, ..., LK , X, Y > by the following optimization problem:

minimize:
1

|U |
∑
u∈U

Fu(L1, ..., LK , X, Y)

subject to: (X,Y) ∈ {(6, 12), (12, 24), (15, 30)}
Ln ∈ {0%, 20%, 40%, ..., 100%} 1 ≤ n ≤ K

(3)

where U denotes the set including all users in our dataset.
Fu(L1, ..., LK , X, Y) is the bandwidth consumption to cover
the FoV trajectory of user u by ShiftTiles T1(L1), ..., TK(LK)
and X × Y StaticTiles. Since the parameter space (18 com-
binations) of this optimization problem is small enough, we
directly make an enumeration to solve it.

III. ACCURACY-SENSITIVE STREAMING ALGORITHM

In this section, we propose an accuracy-sensitive streaming
algorithm to be resilient to FoV prediction errors. According
to our data analysis, although it is difficult to accurately
predict the FoVs, the FoV prediction accuracy can be well-
estimated (§III-A). So in the client-side tile selection, we
adaptively expand the streaming areas based on the estimated
FoV prediction accuracy (§III-B).

A. Data-driven FoV prediction analysis

We first obtain 4200 traces of FoV predictions by using the
cross user method [12] to predict the FoV trajectories in the
public dataset [15].

Then based on 4200 traces of FoV predictions, Figure 4
shows that the FoV prediction accuracy is positively correlated
to the similarity between the current FoV trajectory and
its closest historic trajectory cluster. The similarity between
FoV trajectories is defined as subtracting the Dtra from one.
For example, if the current FoV trajectory has a dominantly
higher similarity with one historic FoV trajectory cluster than
other clusters, there is high confidence that the prediction is
reasonable. Otherwise, if the current FoV trajectory stands
between multiple FoV trajectory clusters, there is a high
probability that the prediction will fail. This is because when
an incoming user acts similarly with many history users, her
future action can be well-estimated by lots of historic data.

The finding gives us an insight that we can dynamically
adjust our streaming areas based on the estimated prediction
accuracy. For example, we can expand the streaming areas to
the user when FoV predictions are likely to fail.

B. Adjusting streaming areas based on FoV prediction accu-
racy

In the client-side streaming logic, we adaptively adjust the
size of FoV coverage areas according to the similarity between
current FoV trajectory and historic FoV trajectory clusters.
Based on 4200 historic traces of FoV predictions, Figure 5
shows that given a current FoV trajectory, when its highest
similarity with historic clusters is over 70%, covering one

0 50 100

The highest similarity with

historic clusters (%)

0

25

50

75

100

P
re

d
ic

ti
o
n
 a

c
c
u

ra
c
y
 (

%
)

Figure 4: Correlation between
similarity with historic clus-
ters and predicting accuracy.

0 50 100

The highest similarity with

historic clusters (%)

34

36

38

40

42

44

V
-P

S
N

R
 (

d
B

)

Streaming with one cluster

Streaming with two clusters

Figure 5: V-PSNR of differ-
ent streaming algorithms un-
der the same fixed bandwidth.

possible future trajectory is better. When it is below 70%,
covering two is better.

Then based on the adaptive FoV coverage methods, we
run an optimization problem in the client-side logic. The
optimization problem is to maximize the video quality V-
PSNR [16] of selected ShiftTiles and StaticTiles with the
restriction of a given bandwidth consumption S and full
coverage of one or two possible FoV trajectories. Assume
P is the set of pixels in the most possible one or two FoV
trajectories. A is the set of all available tiles for the video
chunk (including different quality versions of ShiftTiles and
StaticTiles). The client-side logic needs to select a part of
them, called A′ (A′ ⊂ A), to cover the trajectories within the
given bandwidth S. Y (A′) denotes the V-PSNR of selected
quality versions of ShiftTiles and StaticTiles. B(A′) denotes
their bandwidth consumption, and E(A′) is the pixels inside
them. Then we make the client-side tile selection by the
following optimization problem:

maximize; Y (A′)

subject to: A′ ⊂ A

B(A′) ≤ S

P ⊂ E(A′)

(4)

To solve this problem, enumerating all possible combina-
tions is impractical because the number of different combina-
tions could reach 2|A| (In our experiments, the value of |A|
is usually around 1500). Thus we derive a two-step solution
to reduce computation complexity.

First, we only ensure the full coverage of users’ FoVs. And
the coverage is not relative to the quality versions. Once the
selection of ShiftTiles is determined, the optimal selection for
StaticTiles is straightforward: because one pixel is covered
by only one StaticTile, we just select each pixel in the FoV
trajectory that is not covered by the ShiftTiles and cover it by
the corresponding StaticTile. Typically, there exist 5 ShiftTiles
of the same quality version in our algorithm. Thus we can
obtain 25 combinations to cover the users’ FoVs.

Second, we satisfy the bandwidth constraint and obtain the
final results. Once given a specific FoV coverage solution, the
problem can be transformed into a Multiple Choice Knapsack
(MCK) problem [17]. There exist several tiles of different

positions that are used for FoV coverage. Each tile has several
quality versions with their bandwidth consumption and V-
PSNR. The MCK problem is how to select the quality versions
of different tiles to maximize the total V-PSNR within the
bandwidth constraint. Since we have 25 FoV coverage solu-
tion, we solve 25 MCK problems and take the maximum of
solutions as the results. Owing to the high-efficiency solutions
to the MCK problem [18], the MCK problems can be solved
within 0.1s on mainstream mobile platforms.

IV. EVALUATION

In this section, we evaluated STC with both trace-based
simulation and real-world decoding evaluation.

A. Methodology

Dataset: We use 16 VR videos [15] (618 seconds in total)
with actual 34 user FoV trajectories (aged 20 to 24). The
genres of videos are mainly sports. For specifically, due to
the lack of 16K original videos in current VR video datasets,
we up-sampling the original VR video onto the corresponding
16K videos. And each video is encoded into 5 quality levels
(QP=22, 27, 32, 37, 42) and 1-second chunks using the
FFmpeg [19] and x264 [20]. We also obtain real 4G traces
in [21] to run the trace-based evaluation.

Experiment environment: We randomly choose FoV tra-
jectories from 26 users that are used for running the tiling op-
timization problem (e.g., proposed STC). And FoV trajectories
of the other 8 users are used for evaluations. In trace-based
simulations, we build a VR video mock-up system of dash on
C# and Matlab. In real-world decoding evaluations, we build
a test-bed based on the Unity pro [22] and ExoPlayer [23]
with mediacodec. As for hardware platforms, we choose a
powerful Windows Server 2016-OS desktop (Intel Xeon E5-
2620v4 CPU, 160GB RAM) as the video provider to run the
trace-based simulation experiment. And mobile platform vivo
iqoo (Qualcomm Snapdragon 855 CPU, 12GB RAM) is used
to run the decoding evaluation.

Baselines: We compare STC with four proposals, Op-
Tile [10], ClusTile [11], Grid-like Tiling [12], and Flare [24].
Flare and Gird-like tiling split the video chunk into 4 × 6
and 6 × 12 rectangular StaticTiles. OpTile split the video
chunk into different sizes of tiles according to the encoding
efficiency. ClusTile is the state-of-the-art tiling scheme, which
splits the video chunk into different sizes of tiles according
to both the FoV distribution and encoding efficiency. Since
OpTile and ClusTile are not open-source projects, we imple-
ment them strictly according to [10], [11] and optimize all
parameter settings to reach their best performance. We set
the grouping clusters of both STC and ClusTile to 5. For a
fair comparison, all baselines and STC use the same logic for
FoV prediction (cross-user FoV prediction [12]) and the same
bitrate adaptation algorithm.

Video quality metrics: In our evaluation, We evaluate the
video quality with V-PSNR [16], buffering ratio, and frame
rate, which are critical to user experience. V-PNSR is a typical
evaluation metric in VR video quality assessment. And the

0 20 40 60 80

Bandwidth (Mbps)

32

34

36

38

40

42

44

V
-P

S
N

R
 (

d
B

)

STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

(a) Bandwidth - V-PSNR

0 20 40 60 80

Bandwidth (Mbps)

0

25

50

75

100

B
u

ff
e

ri
n

g
 r

a
ti
o

 (
%

) STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

(b) Buffering ratio - V-PSNR

Figure 6: Bandwidth - V-PSNR and Buffering ratio - V-PSNR
trade-off under fixed bandwidth

0 20 40 60 80 100

Buffering ratio (%)

32

34

36

38

40

42

V
-P

S
N

R
 (

d
B

)

STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

Figure 7: Buffering ratio - V-PSNR trade-off under fluctuating
bandwidth

buffering ratio in our evaluation is defined as the stalling
time during the whole playback. Frame rate is the final video
display rate which is influenced by the decoding speed.

B. Fixed and fluctuating bandwidth evaluation

In the fixed bandwidth evaluation, We apply 10 fixed
bandwidth and the same bitrate adaptation algorithm to all
the baselines and proposed STC.

Under the same fixed bandwidth, Figure 6 shows that STC
achieves 1.2dB higher V-PSNR and 10.2% less buffering
ratio compared with the state-of-the-art solution. In STC,
our ShiftTiles track the FoV movement more accurately and
save more pixels outside users’ FoVs, which leads to more
bandwidth saving and reduce the possibility of buffering.

In the fluctuating bandwidth evaluation, we pick the real 4G
traces [21] as the input bandwidth. For specifically, we apply
different bitrate adaptation parameters to all the methods at the
same time to control the aggression. For example, when the
bitrate adaptation is getting more aggressive all the methods
will tend to have a higher buffering ratio and V-PSNR.

Compared with the state-of-the-art solution, Figure 7 shows
that STC achieves 0.9dB higher V-PSNR and 12.4% less
buffering ratio on average than the state-of-the-art solution
with the same real 4G traces.

C. Real-world decoding evaluation

In the decoding evaluation, Figure 8 (a) shows that STC
achieves 64 fps, which is 45% faster than the state-of-the-
art solution. For a fair comparison, we only use the hard-
ware decoders and guarantee the same utilization of them

0 100 200

Decoding frame rate

0

50

100

C
D

F
 (

%
)

STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

(a) Decoding frame rate

0 1 2

Pixel number 10
8

0

50

100

C
D

F
 (

%
)

STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

(b) Decoded pixel number each frame

Figure 8: Cumulative distribution graph of decoding frame
rate and decoded pixel number each frame

0 20 40 60 80 100

FoV prediction error (degree)

32

34

36

38

40

42

V
-P

S
N

R
 (

d
B

)

STC

ClusTile

6*12 Grid Tiling

Flare Tiling

OpTile

Figure 9: V-PSNR under different FoV prediction errors

on mobile platforms across all the baselines and STC. Our
faster decoding speed is owing to our huge pixel saving from
ShiftTiling, and Figure 8 (b) shows that STC reduces 29%
decoded pixel number each frame compared with the state-
of-the-art solution.

D. Robustness against FoV prediction errors

To evaluate STC’s robustness against FoV prediction er-
rors, we simulate the FoV prediction with different levels
of errors and apply these predicted FoV trajectories to STC
and baselines. All the methods are evaluated with the same
fixed bandwidth. Considering that FoV prediction errors have
a significantly bad influence on V-PSNR, the variation of V-
PSNR under FoV prediction errors is presented in this section.

Figure 9 shows that STC achieves substantial 0.3dB to
1.8dB higher V-PSNR quality than the state-of-the-art solution
with an increasing level of FoV prediction errors. Under the
low prediction error, STC streams fewer pixels for areas not
viewed by users, saving bandwidth to raise the quality of
areas that are more likely to be viewed. And under the high
prediction error, the accuracy-sensitive streaming algorithm
expands the streaming areas. Although this increases the
bandwidth consumption, it avoids the cases that the actual
FoV is not covered by any tile, which leads to more severe
V-PSNR depression. So this makes STC perform better than
the baselines when there are substantial FoV prediction errors.

E. System overhead

Next, we examine the system overheads of the proposed
STC and baselines on storage overhead and server-side pre-
processing time under a one-minute video. All the baselines

STC ClusTile
6*12 Grid Tiling

Flare Tiling

OpTile

0

2

4

S
to

ra
g

e
 (

G
B

) Regular StaticTiles

Optimal Tiles

Figure 10: Storage compari-
son of a one-minute video

STC ClusTile
6*12 Grid Tiling

Flare Tiling

OpTile

0

2

4

6

T
im

e
 (

h
o

u
r)

Solving ILP

Data Preparation

Video Encoding

Figure 11: Preprocessing time
comparison of a one-minute
video

and STC use the standard FFmpeg and x264 to encode the
corresponding tiles in the same parameter settings.

Server-side storage overhead: Figure 10 shows that STC
saves 7% storage than ClusTile. For specifically, to prevent
the difference between the historic users and incoming users,
both STC and ClusTile need to store a regular StaticTiles (e.g.,
12×24 grid-like tiles), which leads to 2.64× and 2.82× bigger
storage than OpTile. If we assume the consistency between
historic users and incoming users, STC will only lead to 1.17×
bigger storage than OpTile. This is because we encode only
one ShiftTile and corresponding supplementary StaticTiles for
each FoV trajectory cluster. So most of the pixels are covered
by only one ShiftTile and few supplementary StaticTiles.

Server-side preprocessing overhead: Figure 11 shows that
STC saves 36.1% preprocessing time than ClusTile. In STC,
due to few number of tile combinations, ILP solving only
accounts for less than 1% preprocessing time. And STC needs
to encode 6 popularity of ShiftTiles each cluster, which are
used to solve the tile optimization problems. ClusTile encodes
10 tiles of each cluster and has a longer encoding time than
STC. ClusTile also needs to predict the bitrate of all combined
StaticTiles using huge data of motion vectors, which leads to
severe time consumption of data preparation.

Overall, we think that the server-side storage and video
processing overhead of STC are still acceptable. It is not trivial
considering its buffering ratio reduction, V-PSNR improve-
ment, and client-side decoding acceleration.

V. CONCLUSION

In 16K VR video streaming, prior solutions design systems
in the way of static FoV coverage. A tile will be delivered
entirely even only one frame is inside the FoV trajectory,
limiting the room for improving VR video streaming quality
especially when the user’s FoV is moving.

In contrast, we show that it is possible to enable 16K VR
video streaming in an FoV tracking way. We encode the video
into ShiftTiles which crops FoV area of each frame along
the FoV movement trajectory. And to be resilient to FoV
prediction errors, we propose an accuracy-sensitive streaming
algorithm, which expands streaming areas (e.g., more Shift-
Tiles) when the FoV prediction is uncertain. Our evaluation
shows that under the same real 4G bandwidth traces, STC
improves 0.9dB V-PSNR, reduces 12.4% buffering ratio, and

achieves 45% faster decoding speed (64 frames per second)
on average compared with state-of-the-art solutions on today’s
mainstream mobile platforms.

In conclusion, STC verifies that it is practical to enable 16K
VR video streaming of 60 fps on today’s mobile platforms.

REFERENCES

[1] In five years, vr could be as big in the us as netflix - quartz. [Online].
Available: https://qz.com/1298512/vr-could-be-as-big-in-the-us-as-n
etflix-in-five-years-study-shows/

[2] Huawei vr glass. [Online]. Available: https://consumer.huawei.com/cn
/wearables/vr-glass/

[3] Oculus quest. [Online]. Available: https://www.oculus.com/quest/?lo
cale=zh CN

[4] L. Clift, “Novel control systems for virtual reality, and their effects on
cyber sickness.”

[5] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva,
“Vr is on the edge: How to deliver 360 videos in mobile networks,” in
Proceedings of the Workshop on Virtual Reality and Augmented Reality
Network, ser. VR/AR Network ’17, 2017, pp. 30–35.

[6] Vanilla 16k uhd future tech. [Online]. Available: https://vanillavideo.c
om/features/specifications/16k/

[7] 5g speed: 5g vs 4g performance compared. [Online]. Available:
https://https://www.tomsguide.com/features/5g-vs-4g

[8] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360
video delivery over cellular networks,” in The Workshop on All Things
Cellular: Operations, 2016, pp. 1–6.

[9] Z. Chen, Y. Li, and Y. Zhang, “Recent advances in omnidirectional
video coding for virtual reality: Projection and evaluation,” Signal
Processing, vol. 146, pp. 66–78, 2018.

[10] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal
tiling in 360-degree video streaming,” in Proceedings of the 25th ACM
international conference on Multimedia. ACM, 2017, pp. 708–716.

[11] C. Zhou, M. Xiao, and Y. Liu, “Clustile: Toward minimizing bandwidth
in 360-degree video streaming,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, April 2018, pp. 962–970.

[12] L. Xie, X. Zhang, and Z. Guo, “Cls: A cross-user learning based system
for improving qoe in 360-degree video adaptive streaming,” in 2018
ACM Multimedia Conference on Multimedia Conference. ACM, 2018,
pp. 564–572.

[13] Jaccard index - wikipedia. [Online]. Available: https://en.wikipedia.o
rg/wiki/Jaccard index

[14] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[15] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao, “Gaze
prediction in dynamic 360 immersive videos,” in proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 5333–5342.

[16] M. Yu, H. Lakshman, and B. Girod, “A framework to evaluate
omnidirectional video coding schemes,” in 2015 IEEE International
Symposium on Mixed and Augmented Reality, Sep. 2015, pp. 31–36.

[17] P. Sinha and A. A. Zoltners, “The multiple-choice knapsack problem,”
Operations Research, vol. 27, no. 3, pp. 503–515, 1979.

[18] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Caching and operator cooperation policies for layered video
content delivery,” in IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications. IEEE, 2016,
pp. 1–9.

[19] Ffmpeg. [Online]. Available: http://ffmpeg.org
[20] x264, the best h.264/avc encoder - videolan. [Online]. Available:

https://www.videolan.org/developers/x264.html
[21] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond

throughput: a 4g lte dataset with channel and context metrics,” in
Proceedings of the 9th ACM Multimedia Systems Conference, 2018,
pp. 460–465.

[22] Unity. [Online]. Available: https://unity.com/
[23] Exoplayer. [Online]. Available: https://github.com/google/ExoPlayer
[24] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical

viewport-adaptive 360-degree video streaming for mobile devices,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking. ACM, 2018, pp. 99–114.

View publication statsView publication stats

https://www.researchgate.net/publication/348786991

