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Abstract—With the rapid development of social network and
multimedia technology, customized image and video stylization
has been widely used for various social-media applications. In
this paper, we explore the problem of exemplar-based photo
style transfer, which provides a flexible and convenient way to
invoke fantastic visual impression. Rather than investigating some
fixed artistic patterns to represent certain styles as was done in
some previous works, our work emphasizes styles related to a
series of visual effects in the photograph, e.g. color, tone, and
contrast. We propose a photo stylistic brush, an automatic robust
style transfer approach based on Superpixel-based BIpartite
Graph (SuperBIG). A two-step bipartite graph algorithm with
different granularity levels is employed to aggregate pixels into
superpixels and find their correspondences. In the first step,
with the extracted hierarchical features, a bipartite graph is
constructed to describe the content similarity for pixel partition
to produce superpixels. In the second step, superpixels in the
input/reference image are rematched to form a new superpixel-
based bipartite graph, and superpixel-level correspondences are
generated by a bipartite matching. Finally, the refined cor-
respondence guides SuperBIG to perform the transformation
in a decorrelated color space. Extensive experimental results
demonstrate the effectiveness and robustness of the proposed
method for transferring various styles of exemplar images, even
for some challenging cases, such as night images.

Index Terms—Image stylization, superpixel, bipartite graph,
stylistic brush.

I. INTRODUCTION

With the prevalence of multimedia social networking, it has
become popular to share photos online. Most people nowadays
prefer uploading photos with special artistic enhancement
made by various Apps such as Facebook and Instagram instead
of the original ones. This kind of photo style enhancement
makes pictures dramatically more impressive and inspires new
imagination. However, existing systems either allow users to
only roughly change the photo in a fixed template, or require a

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by National Natural Science Foundation of China
under Grant 61772043, Microsoft Research Asia project ID FY17-RES-
THEME-013 and CCF-Tencent Open Research Fund. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Sen-Ching Samson Cheung. (Corresponding author: Xiaoyan Sun.)

Jiaying Liu and Wenhan Yang are with Institute of Computer Science and
Technology, Peking University, Beijing, 100080, China, e-mail: {liujiaying,
yangwenhan}@pku.edu.cn.

Xiaoyan Sun and Wenjun Zeng are with Microsoft Research Asia, Beijing,
100080, China, e-mail: {xysun, wezeng}@microsoft.com.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

series of subtle processes by experienced photographers using
the editing software.

Image style transfer aims to automatically change the stylis-
tic elements of an input image (color, texture, contrast, etc.) to
follow a given exemplar, e.g. well-known paintings or fabulous
pictures taken by professional photographers. Early works start
by transferring one of these elements among images. The color
transfer methods either extract the most representative colors
from the images and build a conversion algorithm between
those colors [1], [2], or directly adjust the color distribution
via a histogram feature fitting [3], [4]. Contrast is usually
transferred in the frequency band space, such as the bilateral
space [5], Laplacian pyramid [6] or Haar pyramid [7]. Since
these methods only consider one specific stylized element, they
may produce some visual effect, but are difficult to be applied
widely in practice.

Meanwhile, the image stylization is also explored in
the computer graphics community, referred to as non-
photorealistic rendering (NPR). It aims to generate non-
photorealistic style images, such as watercolor painting [8],
sketch generation [9] and abstract drawing [10]. By a carefully
crafted design, a bunch of stylized elements are extracted to
represent the artistic style of an image and further used to
transfer artistic visual effects. However, these hand-crafted
features, designed with certain type of artworks, lack expand-
ability by nature and are not adaptive in representing other
styles or new styles.

In real applications, it is unrealistic to ask most people to
give a specific description about what style they exactly want.
Usually, what they could offer is a real example they saw be-
fore, e.g. Mona Lisa, or an abstract word they read from books,
e.g. Baroque. Knowing little about image editing, they need a
tool to define a bunch of style settings from these examples
and make adjustments automatically. Like the format painter
of Microsoft Office, Stylistic Brush provides a desirable and
powerful tool to enable an automatic arbitrary style transfer
between images. The style is extracted dynamically from a
fantasy reference image (also referred to as target image). A
new output image is synthesized based on the content of the
input image and the extracted styles of the reference one.

Therefore, some works investigating image stylization by
considering the style composition instead of a single style
element are emerging. Most of these methods devote to
separating and dealing with the content and style individually.
An early work [11] explored the concept of image analogy by
building a multiscale autoregression framework to adaptively
learn a wide variety of image filter. Zhang et al. [12] proposed
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to perform an image component analysis to decompose an
image into three components and constructed a coarse-to-fine
Markov random field to propagate colors in the paint and
edge components. In [13], a deep network-based method was
proposed to separate and recombine the content and style.
A composition of the learned CNN features gives a clue
of content correspondence and guides the production of new
artistic images via transferring the style features.

These methods suffer from two limitations: 1) From the
model aspect, the assumption that the content and the style
could be separable may be questional. Some common ob-
servations, such as sunset with red color and grass with
certain texture patterns, lead to the conclusion that some styles
are highly correlated with the image content. Thus, previous
methods with such a separable assumption lose some style
information in the transformation. 2) From the application
aspect, these methods mainly focus on painting styles and
are good at transferring or generating texture styles. However,
comparing with paintings, people usually pay more attention to
visual effects caused by color, light, contrast etc. than textures
in the photography, especially in the area of photo reference
based image editing [1], [5], [14]–[18]. Since textures are
treated as the property related to scenes and objects, instead
of the individual style. More related detailed analysis about
photography and human vision can be found in [19]–[22].

In this paper, we aim to create a stylistic brush to help
people beautify their photos by transferring desirable styles
of a chosen exemplar image to the input one. Focusing on
photos, we pay more attention to the color, light and contrast
of a photograph instead of the factors related to art, such
as textures or strokes. Compared to previous methods, we
make two more reliable assumptions: 1) For most photos,
the Internet enables us to collect a content similar reference
with a favorable style. It is usually the case for a certain
category of images, such as the landmark or face images;
2) Different from general content-based features, we obtain
matched points of the same scene between the reference and
input images as more reliable guidance of content similarity,
via dense correspondence detection methods.

With the above considerations, the proposed stylistic brush
is realized by a robust style transfer method based on the
Superpixel BIpartite Graph (SuperBIG) framework for image
stylization. First, a dense correspondence between the input
and reference images is estimated to obtain matched pix-
els as the primitives. By exploiting hierarchical features in
different-granularity, we measure the distances from pixels to
the identified matched points in the feature space to cluster
these pixels into superpixels. Then a bipartite graph partition
is exploited to assign uncluttered pixels into superpixels by
considering both the local and global consistency. Afterwards,
superpixels of two images are rematched to form a new
superpixel bipartite graph to refine the final superpixel-level
correspondent relationship. Finally, SuperBIG transfers colors
within each superpixel correspondence in a decorrelated color
space to achieve the stylization.

The main contributions of our work are summarized as
follows:
• We propose an automatic robust style transfer framework

based on the Superpixel BIpartite Graph (SuperBIG)
as a Stylistic Brush for practical photo stylization. It
uses a hierarchical abstraction scheme to integrate the
local consistency of superpixel and the global adaptation
between input and reference images. With any aligned
inputs, SuperBIG also provides a refined superpixel-
level correspondence for accurate and robust local style
transfer.

• Benefiting from diversity of the proposed hierarchical fea-
tures in different granularity, as well as the advantages of
the unified bipartite graph framework, SuperBIG achieves
promising results in terms of effectiveness and robustness
in extensive experiments, even for some challenging
cases, such as night images and scene change cases.
Extensive experiments demonstrate that our method sig-
nificantly outperforms previous methods in the general
style transfer.

The remainder of this paper is organized as follows: Sec-
tion II gives a brief overview of the related work. In Sec-
tion III, we present how to create the superpixel correspon-
dence between input and reference images by the proposed
superpixel bipartite graph model with hierarchal features, and
further apply it for an effective and robust style transfer.
Experimental results are illustrated in Section IV. Section V
briefly discusses our limitations and related future directions.
Finally, concluding remarks are given in Section VI.

II. RELATED WORKS

A. Non-Photorealistic Rendering

Non-photorealistic rendering was first proposed by Winken-
bach and Salesin [23]. It aims to produce images derived from
a wide variety of styles such as painting, drawing, sketching,
illustration and animation for digital art. Non-experts can
transfer artistic styles of famous painters to ordinary photos
taken everyday with the help of NPR. Nowadays, many ad-hoc
NPR schemes have been proposed for this task with a varying
degree of success [24]. While Li et al. [25] proposed to create
and view interactive exploded views of 3D models, Pouli and
Reinhard [17] utilized a user-specified target image’s color
palette to achieve creative effects. For artistic styles rendering,
some researchers focus on simulating virtual brush strokes to
obtain a particular style [26], [27]. Region-based methods are
also used to independently render the interiors of regions [28],
[29]. In the meantime, many image processing filters have been
applied to produce images in artistic styles [30], [31]. Different
from NPR studying on artistic patterns rendering, our work
aims to address the challenge of photo style transfer, where
more diversified styles are faced and photometric properties,
such as light, contrast, change more abruptly within an image.

B. Hand-Crafted Style Transfer

Hand-crafted style transfer techniques aim to adjust the
color, contrast and tone of images, with the aid of signal
properties, e.g. the statistic information of colors, without
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Fig. 1. The flowchart of SuperBIG algorithm. (a) Input and reference images. (b) Matched points detected by dense correspondence method. (c) Hierarchical
features for each pixel. (d) Superpixels obtained by the distance between each pixel and matched points. (e) Superpixels obtained by pixel-level bipartite graph
partition. (f) The superpixel correspondence generated by superpixel bipartite graph matching. (g) The styled result based on colors of input and reference
images, as well as the superpixel correspondence.

considering the content-level correspondence. For color trans-
fer, the work in [1] transferred colors by matching the s-
tatistics of color distributions. Subsequent works improved
the accuracy and robustness of statistical estimation, such as
soft-segmentation [32], multi-dimensional distribution match-
ing [33] and minimal displacement mapping [17]. There are
also some methods [34], [35] that consider colorizing the
image with user defined colors. These methods propagate
colors with an elaborately designed constraint to ensure natural
visual effect of the produced result. For contrast and tone,
adjustment is manipulated in the frequency domain, such as
bilateral space [5], Laplacian pyramid [6] or Haar pyramid [7].
Our work focuses on transferring photo styles adaptively
based on the given references instead of a crafted architecture
designed for the transfer of a certain style.

C. Example-Based Style Transfer

For image stylization, exploiting only signal properties
and statistical correspondence cannot capture the local region
correspondence for the local style transfer. Recently, some
methods explore ways to create and utilize the content-level
correspondence to benefit the stylization. In [36], [37], the
input and reference images are segmented first. Then, colors
are propagated from color images to greyscale images via a
set of locally homogeneous patches or basic elements called
color scribbles. Charpiat et al. [38] assigned colors to the
greyscale image by solving an optimization problem in the
framework of graph cut. In [15], after manual segmentation
of major foreground objects, a belief-propagation colorizes
the greyscale image with the help of Internet images. In [15],
[39], colors are transferred by estimating per-pixel registered
correspondence between input and reference images. Kumar
et al. [16] proposed to create correspondences between su-
perpixels by fast cascade feature matching, and then refine
the transfer results by a voting approach. Cheng et al. [14]
proposed a superpixel-based recoloring scheme based on a
soft matching embedded with color statistics, texture char-
acteristics and spatial constraints to generate new recolored
images. There are also some works that aim to conduct favorite
exemplars recommendation based on visual information [14]
or patch aggregation [40]. Several methods [41]–[43] focus

on addressing the local style transfer on a specific category
- the facial image with assumed face-related priors or by
utilizing external coupled time-lapse videos to create the
local transfer mapping. Compared with them, our method
has distinguished properties and advantages. Generally, our
method is not limited to portrait images and does not utilize
extra information. Specifically, approaches in [41] and [43]
create local transfer mapping based on the facial structures
priors of portrait images. For example, facial landmarks are
assumed given to provide location correspondences in [41].
In [42], the local mapping is built based on the style changes
in the same location of a time-lapse video from the same view.
In our method, without the aid of crafted priors or extra data, a
hierarchical feature covering low- to high-level context is built
to create the initialized local correspondences, then a two-step
bipartite framework is utilized to refine the local transfer by
jointly optimizing the partition and matching across the whole
image to ensure the local and global consistency.

III. SUPERPIXEL BIPARTITE GRAPH FOR PHOTO STYLE
TRANSFER

The proposed SuperBIG transfers the style of the reference
image to the input image by a two-step bipartite graph
framework as shown in Fig. 1. SuperBIG first detects the
dense correspondence (Fig. 1(b)) and calculates the designed
hierarchical features (Fig. 1(c)). Based on the correspondence
and features, SuperBIG then aggregates pixels into super-
pixels using a simple clustering algorithm (Fig. 1(d)) for
the pixels around the matched points and a bipartite graph
framework (Fig. 1(e)) for the pixels far from the matched
points. Afterwards, SuperBIG transfers the colors between
corresponding superpixels (Fig. 1(f)) in a decorrelated color
space.
A. Superpixel Aggregation with Hierarchical Features

Superpixel is a pixel cluster consisting of several pixels with
similar color and brightness. It is proposed to well define
coherent regions, as basic elements of over-segmentation. It
usually provides an initialization for segmentation [44]–[46]
or a soft constraint on segmentation [47], [48]. Compared
with raw pixels, superpixel is a more sparse and efficient
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representation, while it provides more reliable and fine-grained
regions in comparison with segmented objects.

SuperBIG creates and embeds superpixels of input and
reference images in a unified bipartite graph framework. It
obtains superpixels through two steps. The first one is to
cluster pixels into superpixels based on distance measure-
ment with dense correspondence, which is estimated by deep
matching [49]. The relevant hierarchical features for measuring
the distances between pixels include colors, intensity patterns,
textures, etc. The second step is to employ an automatic
bipartite partition in a unsupervised way to group pixels that
are not covered by any superpixel in the first step. Here we
elaborate on the related features.

We use the subscript (i, j) to index the pixel location of an
image I and utilize superscript c and f to denote features of
the input and reference images, respectively. I(i,j) is defined
as the intensity of a pixel at the location (i, j). We extract
a set of features for the following two purposes: To measure
the content similarity in the same domain/style (e.g. within an
image) or to measure that cross domains/styles (e.g. in two
styled images). Thus, the extracted features are classified into
two categories: style-related (including patch intensity, color,
gradient, absolute location) and style-independent (including
texture, relative location, locality-constrained linear coding
feature). All these extracted features are described below,
• Intensity vector of a patch:

M(i,j) =
[
I(k,l)

]T ∣∣∣
(k,l)∈N(i,j)

,

where the set N(i,j) contains locations of pixels (k, l) in
a patch centered at the location (i, j).

• Color C(i,j) at pixel (i, j), which is composed of,

C(i,j) =
[
IR(i,j), IG(i,j), IB(i,j)

]T
,

where IR, IG and IB are three channels of an image I.
They are related to the intensity of that pixel as follows,

I(i,j) =
√

I2R(i,j) + I2G(i,j) + I2B(i,j).

• Gradient of a patch:

DV(i,j) =
[{√

dI2x(k,l) + dI2y(k,l)

∣∣∣(k, l) ∈ N(i,j)

}]T
,

where dIx and dIy denote the intensity variation of the
original image along horizontal and vertical directions,
respectively.

• Absolute location:

La(i,j) =

[
i

h
,
j

w

]T
,

where h and w are the height and width of an image.
It is defined as the normalized location in the original
coordinates for the image.

• Texture feature T(i,j) of a patch centered at pixel (i, j).
The features of factorization-based texture segmenta-
tion [50] are extracted to segment different texture regions
and locate their boundaries.

• Relative location, Lr(i,j). SuperBIG regards the dense
points as reliable locations and utilizes them to ‘relocate’

the pixels with the novel coordinates, which takes the
locations of these matched points as the basis. It is defined
as the representation coefficients of a pixel location, when
taking locations of several nearest matched points within
the image as the basis. Locations of five nearest matched
points to pixel (i, j) are denoted as,

τττ =
{
[il, jl]

T |l=1,2,...,5

}
.

The current location (i, j) is represented by the multipli-
cation of τττ and a representation coefficient ααα,

τττααα = [i, j]
T
.

Then, ααα is solved by,

ααα = (τττTτττI + nααα)
−1(τττT [i, j]

T
),

where nααα is the ridge parameter for ααα to avoid singular
solutions. To generate the relative location Lr(i,j), we put
the solved ααα to Lr(i,j) in the corresponding dimension
that belongs to the matched point and zeros in other
dimensions.

• Locality-constrained linear coding (LLC) feature, S(i,j).
Similar to the idea of calculating the relative location,
we calculate the ‘relative location’ in the feature space,
to generate a measurement of content similarity, indepen-
dent on the style. Similarly, with the matched points pro-
vided by deep matching, we use features of these matched
points as the basis (or the coordinates in the feature space)
to calculate the representation coefficients, independent
on the style. Assume the five nearest matched points at
the location (i, j) are represented in the feature space,

τττf =
{
[Mil,jl ,Cil,jl , Iil,jl ,DVil,jl ]

T |l=1,2,...,5

}
.

Then, a sparse coefficient βββ is calculated by solving,

τττfβββ = [Mi,j ,Ci,j , Ii,j ,DVi,j ]
T
.

We then have,

βββ = (τττTf τττf + nβββI)
−1(τττTf [Mi,j ,Ci,j , Ii,j ,DVi,j ]

T
),

where nβββ is the ridge parameter for βββ to avoid singular
solutions. To generate the relative location Sr(i,j), we put
the solved βββ to Sr(i,j) in the corresponding dimension
that belongs to the matched point and zeros in other
dimensions.
With the help of the above mentioned features of several
nearest matched points Pc

(i,j) or Pf
(i,j), Sc(i,j) and Sf(i,j)

are representation coefficients of the unmatched points
(i, j) from the input and reference images.

Intuitively, these features are diverse in order to cover most
information to build the content correspondence. As mentioned
above, according to whether a feature is capable of measuring
the content similarity cross styles, these features are classified
into: style-related and style-independent. The former is mainly
utilized to measure the similarity between input and reference
images, while the latter is exploited to measure the similarity
between two pixels in the same image.

Here we create superpixels around matched points and build
a mapping based on the correspondences of these points.
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Intuitively, coupled superpixels around paired matched points
share the same style transformation. We use p and q to
index two arbitrary pixels in the input and reference images,
respectively. And let t index an arbitrary pixel in one of
them. For each pair of matched point locations (ip, jp) and
(iq, jq), the distance of one pixel (it, jt) in the input image
to the corresponding matched point in the reference image is
calculated by style-dependent features as follows,

Dc(u(it,jt), u(ip,jp))

= −

∥∥∥Mc
(it,jt)

−Mc
(ip,jp)

∥∥∥2
2

λM
−

∥∥∥Tc
(it,jt)

−Tc
(ip,jp)

∥∥∥2
2

λT

−

∥∥∥Cc
(it,jt)

−Cc
(ip,jp)

∥∥∥2
2

λC
−

∥∥∥DVc
(it,jt) −DVc

(ip,jp)

∥∥∥2
2

λDV

−

∥∥∥La,c(it,jt)
− La,c(ip,jp)

∥∥∥2
2

λLa

, (1)

where λ(·) are weighting parameters to balance the effect of
each term. The distance Df (v(it,jt), v(iq,jq)) in If can be
computed similarly. Then, we create super-pixel clusters Fc,mp
and Fr,mq containing all the pixels with a distance to p and
q respectively less than a given threshold Tcluster. After that,
superpixels around the matched points are obtained. SuperBIG
further deals with other unsettled pixels in a bipartite graph
framework hereafter.

B. Pixel Bipartite Graph Partition

After obtaining the superpixel around matched points, Su-
perBIG constructs a pixel-level bipartite graph from the un-
covered pixels that do not belong to any given superpixel.
Afterward, a bipartite partition is followed to cluster those
unsettled pixels into superpixels.

Let f c(i,j) and fr(i,j) represent the hierarchical features cor-
responding to the pixel located at (i, j) in the input and
reference images. Because we aim to calculate the content
closeness of pixels in two images with different styles, the
hierarchical features consist of style-free features, such as
locations, gradient, textures, defined as follows,

f c(i,j) =
[
Sc(i,j),T

c
(i,j),L

a,c
(i,j),L

r,c
(i,j)

]
. (2)

So does fr(i,j).
Based on the hierarchical features to calculate the affini-

ties between nodes, SuperBIG constructs the pixel bipartite
graph. Let u(i,j) and v(i,j) denote the node corresponding
to the pixel in the location (i, j) of the input and reference
image, respectively. Here (i, j) only represents the location
of unsettled pixels. There is an edge connection between
corresponding nodes in the bipartite graph, only when the
nearest dense points of their corresponding pixels are largely
matched. Then, the pixel corresponds to the node in the
graph, and edge weights (affinities) are calculated based on

hierarchical features f c(ip,jp) and ff(iq,jq) adjusted by weighting
parameters λ(·) for each kind of features as follows,

E(u(ip,jp), v(iq,jq))

= exp

−
∥∥∥Sc(ip,jp) − Sf(iq,jq)

∥∥∥2
2

λS
−

∥∥∥Tc
(ip,jp)

−Tf
(iq,jq)

∥∥∥2
2

λT

−

∥∥∥La,c(ip,jp)
− La,f(iq,jq)

∥∥∥2
2

λLa

−

∥∥∥Lr,c(ip,jp)
− Lr,f(iq,jq)

∥∥∥2
2

λLr

 . (3)

Then, a weighted bipartite graph is constructed between two
nodes (u, v), corresponding to the pixels of images that are
exactly paired matched points in the dense correspondence.
Their edge weights (affinities) E(u, v) correspond to the
similarities, which are independent of the style.

When performing the graph partition, a natural choice
is spectral clustering. It is exploited to capture the cluster
structure of a graph by clustering the spectrum of the Laplacian
matrix. D is defined as the degree matrix. It is formulated as
a generalized eigen-problem,

Jg = λDg, (4)

where λ is the eigenvalue to be optimized. And J = D −Ω
is the Laplacian matrix and D = diag(Ω1) is the degree
matrix. 1 is a unit vector and Ω denotes the affinity (adjacent)
matrix of the graph, that contains the affinity E(u, v) of
every paired nodes (u, v) in the graph. For clustering, the
Laplacian matrix is approximated by a block-diagonal matrix
including k eigenvalues block-diagonal matrix. The Lapla-
cian matrix can be also defined as the normalized Laplacian
JN = D−1/2JD−1/2 or generalized Laplacian JG = D−1J.

It can be solved with the Lanczos method [51] on the
normalized affinity matrix Ω̃ = D−1/2ΩD1/2 or partial
SVD [52] on normalized across-affinity matrix. Adopting the
latter solution in our method, the bottom k eigenvectors of (4)
are obtained by the top k left and right singular vectors of the
normalized across-affinity matrix,

Ω̃a = D
−1/2
X ΩD

−1/2
Y , (5)

where DX = diag(Ω)1 and DY = diag(Ω)T1 denote the
degree matrix of X and Y, respectively. Then, we obtain k
superpixel clusters Fc,up and Fr,uq and get a set of coupled
superpixel clusters Fc = [Fc,m,Fc,u] and Fr = [Fr,m,Fr,u].

C. Superpixel Bipartite Graph Matching

In the above step, SuperBIG estimates the superpixels for
the pixels that are not covered by superpixels of matched
points. In this process, superpixels of matched points and their
covered pixels are totally ignored in the constructed pixel-level
bipartite graph. It may lead to inaccurate matchings when
some superpixels of matched pixels in the input image in
fact correspond to the superpixels of unmatched pixels in the
reference image.

Thus, SuperBIG constructs a superpixel bipartite graph and
performs a graph matching on it. The nodes of the new
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graph represent superpixels of Fc and Fr. There is an edge
connection between corresponding nodes, only when their
hierarchical features are close enough in the feature space.
Considering that the pixels in a superpixel share similar
features, for similarity, hierarchical features of a superpixel are
defined as the mean vector of hierarchical features of pixels
within it. And the affinities between superpixel bipartite graph
are calculated based on the superpixel hierarchical feature, in
the same way as (3). Then, SuperBIG solves the bipartite
graph matching by the Hungarian algorithm [53], obtaining
final superpixel correspondences Fcf and Frf .

D. De-Correlated Style Transfer

After we obtain a reliable superpixel correspondence, the
style transfer based on such a correspondence is built. Color
and contrast transfer usually changes the dominant color and
contrast distribution, and maps to desirable color and contrast
casts. A slightly more general approach is to fit the color
statistic of the input image into that of the reference one.
Global methods based on the color statistic cannot handle
some tough cases, such as the image containing complex
details and diverse colors. Based on the SuperBIG framework,
the styles of an image could be transferred locally at the
granularity of superpixel.

SuperBIG transfers colors by manipulating the statistic
in the lαβ-CIE space, a de-correlated color space, as our
local mapping method. Here we define [IL, IM , IS ]

T
=

F [IR, IG, IB ]
T , where F is a predefined transformation ma-

trix and IR, IG, IB are three channels of a RGB image. Then,
we convert [IL, IM , IS ]

T to the logarithmic space,

IL = logIL, IM = logIM , IS = logIS ,

 Il
Iα
Iβ

 =


1√
3

0 0

0 1√
6

0

0 0 1√
2


 1 1 1

1 1 −2
1 −1 0

 IL
IM
IS

 .
This decorrelation makes three color channels independent.

SuperBIG then adjusts the color statistic in such space by
matching mean and variance as follows,

I?l = Il − 〈Il〉 , I?α = Iα − 〈Iα〉 , I?β = Iβ − 〈Iβ〉 ,

I
′

l =
σlr
σlc

I?l , I
′

α =
σαr
σαc

I?α, I
′

β =
σβr

σβc
I?β , (6)

where 〈·〉 is the operator to calculate the mean and σ is
the variance of the image for a given channel. With the de-
correlated style transfer for local regions, SuperBIG transfers
styles between each pair of estimated corresponding super-
pixel pairs in Fcf and Frf . After that, we finally smooth the
transferred results by the guided image filter [54]. It helps
remove the boundary effect between superpixels, as well as
detailed artifacts caused by inaccurate super-pixel mappings
when the hierarchical features of super-pixels fail to describe
their relationship.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

We compare the proposed method (SuperBIG) with the
following eight state-of-the-art style/color transfer method-
s: Lαβ decorrelated color space (Lαβ) [1], color “mood”
transfer (MoodTrans) [55], multi-scale harmonization (Har-
monization) [7], landmark sparse color representation (Land-
mark) [34], neural algorithm of artistic style (NeutralArt) [13],
superpixels matching (SuperMatch) [16], image morphing +
SITF flow (Image Morphing) [41] and data-driven hallucina-
tion (Data-driven) [42]. To make a fair comparison in our
case, for Image Morphing, the initial matched points are
provided by deep matching and no foreground and background
masks are used. For data-driven hallucination, the coupled
references are replaced with our input and referenced images,
without the aid of additional video resources. Results of these
methods are generated by the published codes kindly provided
by the authors. When compared to the colorization methods,
SuperBIG first turns the input image into greyscale one, then
colorizes the generated greyscale image. We use two sets of
parameters for two tasks respectively in our experiments in
Table I.

TABLE I
THE PARAMETER SETTINGS FOR TWO TASKS RESPECTIVELY IN OUR

EXPERIMENTS.

Parameters λM λT λC λDV λS
Similar scenes 0.1 0.001 0.0001 10−6 0.1

Different scenes 0.1 0.01 0.01 10−6 0.1
Parameters λLa λLr nααα nβββ -

Similar scenes 0.01 0.01 1000 106 -
Different scenes 0.001 0.001 10 106 -

These parameters are initialized as λM = 0.01, λT =
1, λC = 0.01, λDV = 0.01, λS = 1, λLa = λLr = 1, nααα =
104 and nβββ = 104. Then, we increase/decrease parameters of
some terms gradually based on the performance of each task.
Note that, we do not tune parameters for each paired inputs.

B. Comparison with State-of-the-Art and Various Styles

The comparison results of SuperBIG and other state-of-the-
art methods for three input images are presented in Figs. 2-
4. Please enlarge and view these figures on the screen for
better comparison. The subjective quality of these results
demonstrates the superiority of the proposed SuperBIG. Lαβ
and Harmonization totally fail to transfer the color, because
of wrong dominant color prediction in Figs. 2(b) and 3(b)
as well as heavily blurred or extremely rough sky regions
in Figs. 2(c)-4(c), respectively. Landmark, NeutralArt and
SuperMatch suffer from wrong local style predictions, e.g.
blue color near the edges and corners of the pyramid in
Figs. 2(d)(f)(g) and the color artifacts on the top of the towers
of Taj Mahal in Figs. 4(d)(f)(g). For image morphing [41],
lights and contrasts in regions are transferred well, however,
it suffers at boundaries between regions, where wrong color
transfers contaminate the transfered results. For data-driven
hallucination [42], without the guidance of additional coupled
video sequences, it is easy for that method to degenerate to
a global transfer. Thanks to informative hierarchical features
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(a) Input (b) Lαβ (c) Harmonization (d) Landmark (e) Image Morphing

(f) Reference (g) NeutralArt (h) SuperMatch (i) Data-driven (j) SuperBig

Fig. 2. Visual comparisons of style transfer among different algorithms.

(a) Input (b) Lαβ (c) Harmonization (d) Landmark (e) Image Morphing

(f) Reference (g) NeutralArt (h) SuperMatch (i) Data-driven (j) SuperBig

Fig. 3. Visual comparisons of style transfer from (a) to (e) among different algorithms.

(a) Input (b) Lαβ (c) Harmonization (d) Landmark (e) Image Morphing

(f) Reference (g) NeutralArt (h) SuperMatch (i) Data-driven (j) SuperBig

Fig. 4. Visual comparisons of style transfer from (a) to (e) among different algorithms.
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and effective superpixel bipartite framework for modeling in
the global and local correspondences, SuperBIG transfers the
proper styles for the local regions in the generated results as
shown in Figs. 2(j)-4(j).

The subjective results of SuperBIG to transfer different
styles are showed in Fig. 5. From the results, we observe that
SuperBIG generates the results containing clear and natural
content while successfully changing their styles based on the
reference images, leading to similar spatial distribution of col-
or and contrast. It is worth noting that, even for the night image
as shown in the right-bottom of Fig. 5(b), where background
light is dim, SuperBIG can still achieve the transformation
successfully and generate naturally looking results.

C. User Study in Subjective Evaluation

To compare different stylization results from an observer’s
perspective, we employ the paired comparisons approach,
where the participants are shown two stylized images at a time,
side by side, and are asked to simply choose the preferred
one by considering both visual quality and similar style to
the exemplar. We have a total of 90 participants, including
both domain experts and generally knowledgeable individuals,
each given 105 pairwise comparisons over a set of five images
with seven different style transfer methods. Fig. 6 illustrates
the seven methods, ranked by the number of votes received.
It can be seen that the proposed SuperBIG outperforms other
methods in four out of the five cases, and achieves overall
superior performance. Even in the exceptional case with the
test image Arch, it still shows comparable performance with
the first ranked method. Besides the voting statistic, we also
show the stability analysis, which is calculated by the rank
product [56]. Table II shows the results of the rank product
ψ(O) = (

∏
i rO,i)

1/b, where rO,i is the specific ranking for
method O and image i (i = 1 . . . b). Compared with others,
SuperBIG produces the best consistency among different test
cases to achieve the best visual quality.

D. Ablation Analysis

To further explore the functionality of each step of Super-
BIG, we perform the ablation analysis of each step in the
flowchart as shown in Fig. 7. We find that deep matching
provides a large amount of matched points. It can be observed
from Figs. 7(b)(g) that most of them are visually correct.
Taking a given portion of matched points (70% with highest
confidence scores) and calculating the hierarchical features,
SuperBIG obtains superpixels around matched points as shown
in Figs. 7(c)(h). Afterwards, uncovered pixels are handled in
a pixel-level bipartite graph to generate other superpixels in
Figs. 7(d)(i). According to the correspondence obtained so
far, we generate the style transfer result of Fig. 7(e). It can
be seen that, because the matching from the previous steps
does not consider the global information, it generates only the
locally consistent result. There are some visually unpleasant
details. First, there are some inaccurate color transfer results
in the right- bottom part of the image. Second, the sky in
Fig. 7(e) presents abundant textures, different from that in both
the input and reference images. Thus, SuperBIG reconsiders

the matching between all superpixels of the two images. Due
to the feature refined from pixels to superpixels and global
optimization, SuperBIG generates a well-constructed result in
Fig. 7(j).

E. Visual Comparison for Local Transfer

To evaluate the effectiveness of our bipartite graph frame-
work for local transfer, we compare it with the state-of-
the-art local transfer method - image morphing with SIFT-
flow (Image Morphing) [41], as shown in Fig. 8. From the
results, it is clearly shown that our method achieves superior
visual quality. The proposed hierarchical feature covers many
factors including color, gradient, textures, etc., and the bipartite
partition and matching utilize the context information across
the whole image. Based on them, with moderately accurate
geometric correspondences, our method still achieves promis-
ing results. Comparatively, in the general case, there is no
reliable matched points, and Image Morphing is not robust to
inaccurate matchings and suffers from the inaccurate transfer
at the boundaries between regions.

Fig. 8. Visual comparisons for local transfer with image morphing and SIFT
flow (Image Morphing) [41]. In each group, from left to right, each column
is the input image, the result of Image Morphing and that of SuperBIG,
respectively. The inserts show the reference images.

F. Visual Results in Different Scenes

Constrained by the local and global consistency, our two-
step bipartite graph framework is capable of removing false
initial matchings, creating reliable matchings robustly and
generating natural-looking stylized results. Thus, it is capable
to transfer the style in partial occluded image or highly affined
image in some extent. The results of our method with scene
changes are illustrated in Fig. 9. It is observed that, with
our hierarchical features to encode low to high level context
information and bipartite graph framework that effectively
handles initial wrong matchings, our approach achieves rather
good visual quality in scene change cases.
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(a) Input (b) Output: Styles transferred photos from the examples. The inserts show the examples.
Fig. 5. Visual comparisons of SuperBIG style transfer for different reference images.

TABLE II
COMPARISON OF THE RANK PRODUCT OF SEVEN METHODS.

Method CIE-Lαβ Harmonization Landmark MoodTrans NeutralArt SuperMatch SuperBIG
Rank ψ 4.04 5.07 4.22 6.35 2.83 2.83 1.15

Fig. 6. The number of votes per testing image and the total ranking of seven methods.

V. FURTHER ANALYSIS AND DISCUSSIONS

In this section, more analysis about our method and the
related results are presented. Besides, the limitations of our
method and several potential future directions are briefly
discussed.

A. Computational Complexity and Acceleration

We report the time cost of our SuperBIG and compare its ef-
ficiency with other methods. The compared methods are from
the public available codes provided by the authors. The Neutral
Art is implemented in Torch and we run it with GPU for
testing. Our proposed method and other compared methods are
implemented in MATLAB. We evaluate the running time of all
the algorithms with the following machine configuration: Intel
i5-3230M 2.60GHz and 12 GB memory. Table III presents the
running time of one transfer with an input (800×600) and a
reference (800×761) image for all comparison methods.

SuperBIG is the unaccelerated version of the proposed
method. SuperBIG+PM is the version with Matlab built-
in parallelization and a zooming acceleration. The zoom-
ing acceleration is to down-sample the input and reference
images, and then transfer the style at a small scale. Then,
the transferred result is up-sampled to its original size and
finally a detail enhancement in its luminance channel is
utilized. From the table, it is observed that, time cost of our

proposed method without any acceleration remains similar to
SuperMatch and Neutral Art in magnitudes. The parallelization
and zooming acceleration significantly improve the efficiency
of our method, achieving the competitive time efficiency to
Harmonization and Landmark.

With these acceleration techniques, our SuperBIG is reach-
ing the application with minute-level running time. The ways
to further accelerate our method to facilitate a real-time appli-
cation, such as GPU implementation [57], [58] or precomputed
partition and matching of certain sub-graphs with specific
structures, are worthy of our future exploration.

TABLE III
RUNNING TIME (S) OF ALL METHODS.

Methods Harmonization Landmark Neutral
Running time (s) 98.3438 123.9686 422.0246

Methods SuperMatch SuperBIG SuperBIG+PM
Running time (s) 2056.6673 754.2880 183.6594

B. Visual Results for Video Stylization

To evaluate the generality of our SuperBIG, we apply our
method for video stylization with a simple smooth between
the transfer parameters of nearest superpixels among adjacent
frames. Our method achieves rather impressive results, even
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 7. The ablation analysis for SuperBIG. (a) The input image. (b) Dense correspondence in (a). (c) Superpixels for matched points in (a). (c) Superpixels
for other pixels in (a). (e) The transfer results with the superpixel correspondece generated from the pixel-level bipartite graph partition. (f) The reference
image. (g) Dense correspondence in (f). (h) Superpixels for matched points in (f). (i) Superpixels for other pixels in (f). (j) The transfer results with the
superpixel correspondece generated from the superpixel-level bipartite graph matching.

(a) (b) (c) (d) (e) (f)
Fig. 9. The results of the proposed SuperBIG to transfer the style with scene changes (Input and reference images are totally different scenes). (a) Input.
(b)-(f) Outputs: Style transferred photos from the examples in totally different scenes. The inserts show the examples.

for a video with large view changes. Some shots are shown
in Fig. 10.

Fig. 10. Video stylization results with the camera shift. From left to right,
each collumn is the input frames and stylized frames, respectively. From top
to bottom, each row is the 1st, 101st and 201st frame, respectively. The inserts
show the reference image.

C. Hierarchical Features Analysis

We also explore the effectiveness of each feature in the
hierarchical features. Our features are selected by three steps.

Frist, we analyze and follow the observations in previous meth-
ods. Thus, the patch intensity, color, gradient and locations are
selected to represent low-level features, the texture is utilized
to represent mid-level features. Second, we develop a robust
combination by concatenating these features and encoding
them as the high level feature via the locality-constrained
linear coding (LLC). Finally, we observe and compare transfer
performance and adjust the combination empirically.

Here, we only focus on the functionality of primitive
features: color, distance (absolute and relative), texture, patch
intensity vector, gradient. Fig. 11 shows the results generated
by SuperBIG with the compositions of these five features.
From the results, it could be seen that the composition of color
and distance, or patch intensity vector alone leads to the result
containing many falsely transferred regions. Adding the texture
feature removes many false regions by texture consistency.
However, the quality of the sky is limited. The patch intensity
vector puts the local constraint on the transfer and generates
naturally looking result. The gradient feature generates a more
smooth result with a higher visual quality.

The endeavor to evaluate the quality of the stylization [59],
[60] has caught our attentions and inspired us to explore
selecting a beneficial combination automatically from a large
number of candidates to form the hierarchal features, by
observing the performance on an evaluation set with an
appropriate metric to measure the transfer quality.

D. Comparision with Deep Learning-based Approaches

By encoding from low to high contexts, deep features locate
and connect each object in the input and reference images.
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(a) (b) (c) (d) (e)

Fig. 11. The validation of the hierarchical features in SuperBIG. (a) Color + Distance. (b) Patch intensity vector. (c) Color + Distance + Texture. (d) Color
+ Distance + Texture + Patch intensity vector. (e) Color + Distance + Texture + Patch intensity vector + Gradient.

However, their major weakness is its incapacity to restore good
local details. As shown in Fig. 13, NeuralDoodle [61] and
NeutralArt [13] tend to generate texture-like artifacts in the
transferred results. Comparatively, benefiting from our hierar-
chical features that also encode low- to high-level contexts and
our flexible and robust bipartite graph framework, our method
generates the transferred results with both global and local
consistency.

To further boost the effectiveness of our hierarchical features
by combing our current version and deep ones, which are in-
deed proven very effective to encode object-level information
in previous works, is worthy of the future exploration.

E. Comparison with Global Color Transfer Methods

To demonstrate the importance of modeling local transfer,
we compare to global color transfer methods on testing
cases including diversified color distributions as shown in
Fig. 12(a). In these cases, the global transfer mapping, in-
cluding IDT [4] (Fig. 12(b)) and Monge-Kantorovitch Linear
colour mapping (MKL) [62] (Fig. 12(c)), is not enough to
describe the complex mappings and transfers wrong colors
between objects. Comparatively, SuperBIG (Fig. 12(d)) gen-
erates locally similar results in color and textures, such as the
leaf in the first row, the cloud and ground in the second row,
and the sky and grass in the third row.

F. Failure Cases and Potential Directions

Our style transfer is sensitive to the initial matched points.
As shown in Fig. 14, due to a large amount of mismatched
points between the input and reference images from the
building to the sky, SuperBIG colors the sky with golden
color. Thus, our future efforts will make the algorithm more

Fig. 12. Visual comparisons of style transfer with global color transfer
methods. (a) Input and reference images. (b) IDT [4]. (c) MKL [62]. (d)
SuperBIG.

independent on the initial mappings and further robust to the
wrong initialization. Besides, there are some works [41], [42]
showing the superiority of utilizing SIFT flow to provide the
initialized matchings and using image morphing to gradually
map the reference style to the input one. Thus, it is also inter-
esting to revisit SuperBIG to embed the design methodology
of SIFT flow and image morphing, or to combine them with
SuperBIG to construct a more general and robust style transfer
method.

VI. CONCLUSION

In this paper, we first introduce the concept of image stylis-
tic brush and accordingly design an exemplar-based photo
stylization method, SuperBIG, powered by a two-step bipartite
graph algorithm. Specifically, a bipartite graph is constructed
by considering dense correspondence and hierarchical features
to partition pixels of the input and reference images into
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(a) (b) (c) (d) (e)

Fig. 13. Visual comparisons with deep learning-based methods. (a) Input. (b) NeuralDoodle [61]. (c) NeutralArt [13]. (d) SuperBIG. (e) Reference.

(a) Input image with matched points (b) Reference image with matched points (c) Transferred results

Fig. 14. A failure case of SuperBIG for style transfer. Due to a large amount of mismatched points between the input and reference images from the building
to the sky, SuperBIG colors the sky with golden color.

superpixels first. Then, we generate a superpixel-level bipartite
graph, which produces correspondences of the superpixels
by bipartite matching. The correspondence is then used to
guide the style transformation in a decorrelated color space.
Extensive experimental results demonstrate that the proposed
SuperBIG method achieves superior visual quality compared
to state-of-the-art methods while providing style consistent
with the reference image.
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