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ABSTRACT
There have been many proposed works on image super-
resolution via employing different priors or external databas-
es to enhance HR results. However, most of them do not
work well on the reconstruction of high-frequency detail-
s of images, which are more sensitive for human vision
system. Rather than reconstructing the whole components
in the image directly, we propose a novel edge-preserving
super-resolution algorithm, which reconstructs low- and high-
frequency components separately. In this paper, a Neighbor-
hood Regression method is proposed to reconstruct high-
frequency details on edge maps, and low-frequency part is
reconstructed by the traditional bicubic method. Then, we
perform an iterative combination method to obtain the esti-
mated high resolution result, based on an energy minimiza-
tion function which contains both low-frequency consistency
and high-frequency adaptation. Extensive experiments eval-
uate the effectiveness and performance of our algorithm. It
shows that our method is competitive or even better than the
state-of-art methods.

Index Terms— Image Super-Resolution (SR), Edge-
Preserving, Neighborhood Regression, High-frequency De-
tails

1. INTRODUCTION

Image Super-Resolution (SR) reconstruction is currently a
popular research area in signal processing. In many digital
imaging applications, high-resolution images are often de-
sired for later image processing. The SR task exactly focuses
on the enhancement of image resolution. In general, given
one or more low resolution (LR) images, it is responsible for
mapping them to high resolution (HR) images. However, s-
ince SR image reconstruction is generally a severely ill-posed
problem, many methods for SR reconstruction have been pro-
posed these years. They can be roughly divided into three cat-
egories. Interpolation-based methods use linear or non-linear
interpolation algorithms to restore a single image, such as
New Directed Interpolation (NEDI) [1]; multi-frames-based
methods [2, 3] aim to utilize information from a set of LR im-
ages to compose an HR image; and learning-based methods
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use machine learning techniques in SR reconstruction, which
are very popular in recent years.

The key part of learning-based methods is to learn the
mapping between LR and HR images, and different methods
are proposed to model the relationship. Following the max-
imum a posteriori (MAP), some proposed methods formed
Markov Random Field (MRF) to connect the LR and HR im-
ages and then restored the HR images. Sparse representation
based methods [4, 5] learned their own coupled LR and HR
dictionaries to represent the relationship instead, based up-
on sparse signal representation. Moreover, assuming that two
manifolds of the LR and HR image patches are locally in sim-
ilar geometries, Neighbor Embedding (NE) methods [6, 7] es-
timated HR images by linearly combining the HR neighbors.
Because NE approaches do not need to learn dictionaries or
solve MRF, they dramatically reduce the execution complex-
ity.

However, all of the above methods directly restore the w-
hole components in the image. Since low-frequency compo-
nent contains most of energy in images, restoring the whole
parts together causes that the methods mainly apply on the
low-frequency component. So it results in ignoring the high-
frequency details of images, which are more sensitive for hu-
man vision system. In SR reconstruction, most work can do
well in the low-frequency part since it is more coherent and
less complex. Nevertheless, because the high-frequency part
has more variations and represents details, restoration for this
part is much harder and remains as a challenge of SR recon-
struction. Thus, we pay more attention to the reconstruction
of high-frequency details of the images in this paper.

In our work, we also consider that the SR reconstruction
includes two stages: reconstruction in the low-frequency part
and high-frequency details. We propose a new Neighborhood
Regression method for edge-preserving Super-Resolution
(NRSR), which mainly focuses on the reconstruction of high-
frequency details and the combination with reconstruction of
low-frequency part. Fig.1 illustrates the framework of our
approach. We consider low- and high-frequency components
of images separately. Then, we propose a Neighborhood
Regression method for reconstruction on edge maps, which
represent high-frequency details. Finally, we develop an in-
corporation method to combine low-frequency consistency
and high-frequency adaptation to obtain the final result.

The remainder of the paper is organized as follows: we
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Fig. 1. An overview of the proposed method. The input LR image is reconstructed to an HR image by low- and high-frequency
reconstruction parts and the final combination part. H and V are the reconstructed horizontal and vertical gradient images, and
L is the reconstructed low-frequency component. Note that the patches in high-frequency reconstruction part are all in edge
maps, which represent high-frequency details.

review recent approaches of neighbor embedding for super-
resolution in Section 2. Then we explain our proposed
method in Section 3, and show the experimental results in
Section 4. Finally, the conclusions is drawn in Section 5.

2. NEIGHBOR EMBEDDING APPROACHES

Neighbor embedding approaches assume that small image
patches in the low and high resolution images form mani-
folds with similar local geometry. Chang et al. [6] proposed
a neighbor embedding method for image super-resolution,
using manifold learning method, locally linear embedding
(LLE). In LLE algorithm, local geometry is characterized
by how a feature vector can be reconstructed by its neigh-
bors in the feature space. Because the manifolds in LR and
HR feature space are assumed to have similar local geom-
etry, Chang et al. reconstructed HR patches as a weighted
average of neighbors using the same weights as in the LR
feature domain. The final result was then obtained by using
reconstructed HR patches and averaging where they overlap.

The recent Anchored Neighborhood Regression (ANR)
approach [7] proposed a neighbor embedding in combina-
tion with sparse learned dictionaries, which is to anchor the
neighborhood embedding of a LR patch to the nearest atom
in the dictionary. The ANR approach uses ridge regression to
learn exemplar neighborhoods offline and precomputes corre-
sponding embedding projection matrices to map LR patches
onto the HR domain. It significantly reduces the execution
time.

3. PROPOSED EDGE-PRESERVING
NEIGHBORHOOD REGRESSION METHOD

In this section, we explain our NRSR method for edge-
preserving image super-resolution and develop the algorithm

to obtain the final result.

3.1. Modeling Low- and High-frequency Components of
Images

For single image super-resolution, the LR image Y is a
blurred and downsampled version of the HR image X:

Y = DBX + n, (1)

where D is the downsampling operator, B is the blurring fil-
ter, and n is the noise term. Then the low- and high-frequency
components of X are denoted by Flow(X) and Fhigh(X).
In the spatial domain, high-frequency components represent
abrupt spatial changes in the image, such as edges that give
details. Low-frequency components, on the other hand, rep-
resent global information which is in smooth variations. In
our algorithm, we consider edge maps of the image to stand
for the high-frequency details. Specifically, we use horizontal
and vertical gradients to represent them:

Fhigh(X) = {gh(X), gv(X)}, (2)

where gh, gv are the horizontal and vertical gradient opera-
tors. For Flow(X), since it has smooth variation and less
complexity, most simple methods perform well. We direct-
ly use bicubic result of Y as our reconstruction of Flow(X).
Thus, we use bicubic downsampling for DB and bicubic up-
sampling for BTDT to define Flow(X):

Flow(X) = BTDT(DBX). (3)

The goal of our algorithm is to reconstruct Flow(X),
Fhigh(X) respectively and then combine them. SinceFlow(X)
is reconstructed by bicubic method, the next two subsections
focus on the reconstruction of high-frequency details and how
to combine the two components.
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3.2. Neighborhood Regression for Reconstruction on
Edge Maps
As the previous subsection explains, Fhigh(X) contains H =
gh(X) and V = gv(X). We can reconstruct them respective-
ly by the neighborhood embedding method. Least squares
problems are usually more time-consuming and less efficien-
t when regularized by the l1-norm of the coefficients. Thus,
we formulate this problem as a least squares regression prob-
lem regularized by the l2-norm of the coefficients. We adopt
Ridge Regression, which is known as common used in regu-
larization of ill-posed problems, to solve it:

min{αh}‖yh −Nhαh‖
2
2 + λ‖αh‖22, (4)

where yh corresponds to the horizontal gradient feature of the
given edge map patch of the LR image Y , andNh correspond-
s to the neighborhood of yh in the LR space, which is obtained
by nearest neighbors searching in the dataset. The parameter
λ is the regularization term coefficient. The coefficient αh
can be given by an explicit solution of Ridge Regression:

αh = (NT
hNh + λI)−1NT

h yh. (5)

The corresponding HR’s horizontal gradient patch then can
be calculated by the same coefficient αh:

h = NHαh, (6)

where h is the HR horizontal edge map patch, and NH is the
neighborhood in the HR space corresponding to Nh.

Finally, we need to use these computed patches to con-
struct H . For the overlap portions of patches, most methods
average them among different patches. However, in our edge
images, since a point value represents variation around it, dif-
ferent confidences inside a patch should be considered. As a
central point of a patch, we believe that it is constructed bet-
ter than a point in the boundary of the patch. Thus, we use
different weights inside a patch, and when combining differ-
ent patches, the overlap parts can be weighted averaged. We
adopt Gaussian function as the weighting coefficients.

With this regression method, we can also reconstruct V ,
another part of Fhigh(X), in the same way.

3.3. Combination of Low-frequency Consistency and
High-frequency Adaptation
This subsection illustrates how to combine the reconstruc-
tions of high-frequency details (H ,V ) and low-frequency
part (L), which can be obtained by the neighbor regression
method as shown in Sec. 3.2 and bicubic method respective-
ly. Considering these constraints, low-frequency consistency
and high-frequency adaptation, we propose to minimize the
energy function below to calculate the desired HR image X:

min{X}Ehigh(Fhigh(X), {H,V }) + Elow(Flow(X), L),
(7)

where Ehigh and Elow are the high and low-frequency terms
to represent the data description errors. As the definitions in
previous subsections, Eq.(7) is reformulated as follow:

min{X}‖gh(X)−H‖22 + ‖gv(X)− V ‖22
+ λL‖BTDT(DBX)− L‖22,

(8)

where λL is a parameter used to balance high and low de-
scription error terms.

As many works have shown that the nonlocal redundan-
cies existing in natural images are very useful for image
restoration [8] and incorporating nonlocal method can en-
hance the performance of image super-resolution [5], [9],
[10]. We also integrate the nonlocal similarity to our algo-
rithm framework. For each local patch xi, we search for
its similar patches xli, and then expect the prediction error
‖xi −

∑L
l=1 b

l
ix
l
i‖22 to be small. The nonlocal weight bli is

defined in [8]. Thus, Eq.(8) can be now reformulated by:

min{X}‖gh(X)−H‖22 + ‖gv(X)− V ‖22+

λL‖BTDT(DBX)− L‖22 + η
∑
xi∈X

‖xi −
L∑
l=1

blix
l
i‖22,

(9)

where η is a constant balancing the contribution of nonlocal
regularization.

To tackle the optimal minimization problem in Eq.(9), we
design an iterative algorithm to optimize X . For the first two
terms in Eq.(9), we use gradient descent method to update it.
Then we adopt nonlocal mean method to deal with the fourth
term. Finally, we use back projection [4] to handle the third
term. These updates should be processed alternatively.

3.4. Summary of the Algorithm

The proposed NRSR method has been explained, and now the
entire process is summarized in Algorithm 1.

Algorithm 1 NRSR
Input: Dataset for high-resolution and low-resolution im-
ages, a low-resolution image Y .
• For each patch yh in edge maps of Y :

· use the neighborhood regression method described in
Sec. 3.2 to reconstruct horizontal and vertical gradient
patches.

· use weighted average to reconstruct H and V .

• Use bicubic upsampling method to reconstruct the low-
frequency component L.
• Use X = L for the initial value.
• For each iteration Until convergence:

· update X by gradient descent method for the first two
terms in Eq.(9),

· update X by nonlcoal mean method for the fourth term
in Eq.(9),

· update X by back projection for the third term in Eq.(9).

Output: high-resolution image X
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Table 1. PSNR(dB) results on image super-resolution (scaling factor = 3)

Images Bicubic ScSR[4] SCDL[5] ANR[7] BPJDL[11] DPSR[10] Proposed Gain vs. DPSR
Cameraman 25.20 25.84 26.19 25.54 26.18 26.22 26.47 0.25

Child 29.35 30.36 30.74 29.81 30.94 30.95 31.10 0.15
Lena 30.11 31.08 31.59 30.35 31.54 31.75 31.97 0.22

Oldman 29.84 30.25 30.41 29.28 30.45 30.67 30.71 0.04
Zebra 23.64 25.68 27.41 25.98 27.35 27.79 28.27 0.48

Average 27.56 28.64 29.27 28.19 29.29 29.48 29.70 0.22

4. EXPERIMENTAL RESULTS

In this section, we evaluate our method via the reconstruction
precision and visual quality. For a fair comparison, our train-
ing dataset adopts the same dataset in [10], which consists of
28 logo images and 34 natural images. In our experiments,
the patch size is 9 × 9. We choose 9 nearest neighbors for
Neighborhood Regression, and the regularization parameter
λ in Eq.(4) is set to be 0.15. The representative state-of-the-
art image super-resolution methods, including Bicubic, ScSR
[4], SCDL [5], ANR [7], BPJDL [11] and DPSR [10], are
employed to compare with the proposed NRSR method.

Table 1 compares the final results on the five testing im-
ages, while some examples are shown in Fig.2. For color im-
ages, we only calculate PSNR measures for the luminance
channel. From Table 1, we can see that our proposed method
outperforms the state-of-arts in the five testing images, and its
PSNR is in average 0.22dB higher than DPSR[10], which is
the second best result among the competing methods. In par-
ticular, from Fig.2 we can see that our method can preserve
edges better than the state-of-art methods in visual quality.
The edges are less blurred and sharper in our results, while
reconstructions in other methods also have more ringing ef-
fects and artifacts. These experiments demonstrate that our
method performs better than the state-of-art methods.

5. CONCLUSION

In this paper, we proposed a new edge-preserving image
super-resolution method using Neighborhood Regression. By
considering low- and high-frequency components separately,
our method reconstructs them respectively, and finally us-
es energy minimization to obtain the result. In contrast to
the state-of-art methods, our method preserves edges better,
which are sharper and more natural. It achieves better results
in both reconstruction precision and visual quality.
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