GLADNet: Low-Light Enhancement Network with Global Awareness

Wenjing Wang*, Chen Wei*, Wenhan Yang, Jiaying Liu

* indicates equal contributions

Institute of Computer Science & Technology Peking University

> FOR-LQ Workshop at FG'18 May 19, 2018

Institute of Computer Science & Technology PEKING UNIVERSITY

Contents

- Background
- Architecture of GladNet
- Training Dataset Generation
- Experiments

Contents

Background

- Architecture of GladNet
- Training Dataset Generation
- Experiments

Low-Light

Insufficient illumination can severely degrade the quality of images.

Based on the histogram

Histograms of an image before and after equalization.

Based on the Retinex-model

Based on the de-hazing techniques

• Data-driven

Architecture of the LLNet [8].

Motivation

- Existing methods do not perform well in certain aspects
 - Partially over-exposed, artifacts, slow operation etc.

Motivation

79%

75%

75%

71%

59%

54%

51%

• Visual recognition models suffer from low-illumination

Result by Google Cloud Vision API

Motivation

Visual recognition models suffer from low-illumination

Compared with result on normal-light image

Wrong labels: *couch* with 84%, *angle* with 56% Score declining: *Bedroom* from 96% to 80%, *Bedding* from 81% to 51%

Result by Google Cloud Vision API

Contents

- Background
- Architecture of GladNet
- Training Dataset Generation
- Experiments

 GLobal illumination-Aware and Detail-preserving Network (GLADNet)

Global Illumination estimation

1. scaling the input image to a certain resolution

Global Illumination estimation

2. passing through an encoder-decoder network for global illumination prediction

Global Illumination estimation

3. rescaling back to the original resolution

Details reconstruction

- Loss Function
 - Minimizing the loss between the restored image $F(X_i, \Theta)$ and the corresponding ground-truth image Y_i .

$$Loss(X,Y) = \frac{1}{N} \sum_{i=1}^{N} ||F(X_i,\Theta) - Y_i||_1,$$

where N is the number of all training samples and $\|\cdot\|_1$ is L1 norm.

• The red, the green and the blue channel have their own weights in the loss function: (0.29891, 0.58661, 0.11448)

Contents

- Background
- Architecture of GladNet
- Training Dataset Generation
- Experiments

 Instead of synthesizing pairs from 8-bit RGB images, we synthesize pairs from raw images.

 Instead of synthesizing pairs on 8-bit RGB images, we synthesize pairs on raw images.

Need to set the black point to correct this

- Synthesize low-light raw images by using Adobe Lightroom and setting
 - Exposure parameter E to [-5, 0]
 - Contrast parameter C to [-100, 0]

Some Tricks to Improve the Dataset

- To keep the black and the white regions the same before and after the enhancement
 - add black-to-black and white-to-white training pairs.
- To prevent color-bias
 - add gray-scale image pairs which are converted from color image pairs.

Contents

- Background
- Architecture of GladNet
- Training Dataset Generation
- Experiments

Results - Evaluation

- **MSRCR**^[1] Multi-Scale Retinex with Color Restoration [Jobson 1997]
- **DeHZ**^[4] de-hazing based method [Dong 2011]
- **SRIE**^[3] Simultaneous Reflection and Illumination Estimation [Fu 2016]
- **LIME**^[2] Illumination Estimation based method [Guo 2017]

Results - Evaluation

- LIME^[2] dataset 10 low-light images
- **MEF**^[7] **dataset** 17 image sequences with multiple exposure levels
- **DICM**^[6] **dataset** 69 captured images with commercial digital cameras

Results - Performance

• Naturalness Image Quality Evaluator (NIQE)^[5]

Dataset	DICM	NPE	MEF	Average
MSRCR	3.117	3.369	4.362	3.586
LIME	3.243	3.649	4.745	3.885
DeHZ	3.608	4.258	5.071	4.338
SRIE	2.975	3.127	4.042	3.381
GLADNet	2.761	3.278	3.468	3.184

Input

DeHZ

Low-Light Input

After GLADNet

Input

DeHZ

SRIE

Low-Light Input

After GLADNet

Input

DeHZ

Low-Light Input

After GLADNet

The result in the paper

New result

by randomly reducing the saturation when generating training dataset

Results - Benefit Visual Recognition Models

Low-Light Image

Sky	97%
Cloud	93%
Landmark	91%
Spire	83%
Darkness	81%
Atmosphere	79%
Dusk	78%
Dawn	77%

After GLADNet

Landmark	93%
Sky	93%
Historic Site	85%
Tourist Attraction	85%
Grass	78%
Cloud	77%
Tower	73%
National Historic Landmark	70%

Results - Benefit Visual Recognition Models

Low-Light Image

Night	79%
Phenomenon	75%
Lighting	75%
Darkness	71%
Midnight	59%

After GLADNet

Plant	55%
Painting	54%
Still Life	53%
Window	50%

Reference

[1] Z. Jobson, Daniel Jand Rahman and G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes," IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 965–76, 1997.

[2] X. Guo, Y. Li, and H. Ling, "Lime: Low-light image enhancement via illumination map estimation," IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 982–993, 2017.

[3] X. Fu, D. Zeng, Y. Huang, X. P. Zhang, and X. Ding, "A weighted variational model for simultaneous reflectance and illumination estimation," Computer Vision and Pattern Recognition, pp. 2782–2790, 2016.

[4] X. Dong, Y. Pang, and J. Wen, "Fast efficient algorithm for enhancement of low lighting video," IEEE International Conference on Multimedia and Expo, pp. 1–6, 2011.

[5] A. Mittal, R. Soundararajan, and A. C. Bovik, "Making a 'completely blind' image quality analyzer," IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, 2013.

[6] C. Lee, C. Lee, and C. S. Kim, "Contrast enhancement based on layered difference representation," IEEE International Conference on Image Processing, pp. 965–968, 2013.

[7] K. Ma, K. Zeng, and Z. Wang, "Perceptual quality assessment for multi-exposure image fusion," IEEE Transactions on Image Processing, vol. 24, no. 11, p. 3345, 2015.

[8] Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar, "Llnet: A deep autoencoder approach to natural low-light image enhancement," Pattern Recognition, vol. 61, pp. 650–662, 2016.

Thank you