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BACKGROUND

➤ Automatic Photo Retouching  

➤ The state-of-the-art methods： 

➤ mainly based on supervised learning from paired 
images（by an expert photographer） 

➤ handcrafted features
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BACKGROUND

➤ CNNs： 

➤ Automatic Photo Adjustment Using Deep Neural Networks：
DNN and handcrafted global and local features 

➤ Deep Bilateral Learning for Real-Time Image Enhancement：
predict local affine transforms in bilateral space, edge-aware 
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Automatic Photo Adjustment Using Deep Neural Networks • 13

Input Image Ground Truth Our Result [Hwang et al. 2012]

Fig. 15. Visual comparison with [Hwang et al. 2012]. Left: Input image; Middle Left: groundtruth enhanced image by expert C; Middle Right: enhanced
image by our approach; Right: enhanced image by [Hwang et al. 2012].
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Fig. 16. Comparison of training image selection schemes. When compared
with sensor placement based on mutual information, our cross-entropy based
method achieves better performance especially when the number of selected
images is small. The band shaded in light blue shows the standard deviations
of the L2 errors of our scheme.

For each specific effect, we randomly chose 50 images from MIT-
Adobe FiveK, and let Instagram enhance each of them. Among the
resulting 50 pairs of images, half of them were used for training,
and the other half were for testing. We have verified whether images
adjusted by the trained color mapping functions are similar to the
ground truth produced by Instagram, which has the flavor of a
reverse engineering task. Our experiments indicate that Instagram
effects are relatively easy to learn using our method. Figure 17
shows the learning results for two popular effects.

8.3 User Studies
To perform a visual comparison between our results and those pro-
duced by [Hwang et al. 2012] in an objective way, we collected all
the images from the two datasets, “Random 250” and “High vari-
ance 50”, and randomly chose 50, including 10 indoor images and
40 outdoor images, to be used in our user study. For each of these
50 testing images, we also collected the groundtruth images and
the enhanced images produced with our method and [Hwang et al.
2012]. Then we invited 33 participants, including 12 females and 21
males, with ages ranging from 21 to 28. These participants had little
experience of using any professional photo adjustment tools but did
have experience with photo enhancement Apps such as “Instagram”.
The experiment was carried out by asking each participant to open

Input Image Our Results Instagram

Fig. 17. Comparison with Instagram. Left: Input images (from MIT-Adobe
FiveK); Middle: our results; Right: results by Instagram. The top row shows
the “EarlyBird” effect, and the bottom row shows the “Nashville” effect. This
comparison indicates enhancement results by our trained color mappings are
close to the ground truth generated by Instagram.

a static website using a prepared computer and a 24-inch monitor
with a 1920x1080 resolution. For each test image, we first show the
input and the groundtruth image pair to let the participants know
how the input image was enhanced by the photographer (retoucher
C). Then we show two enhanced images automatically generated
with our method and Hwang et al. in a random left/right layout
without disclosing which one was enhanced by our method. The
participant was asked to compare them with the ground truth and
vote on one of the following three choices: (a) “The left image was
enhanced better”, (b) “The right image was enhanced better”, and
(c) “Hard to choose”. In this way, we collected 33x50=1650 votes
distributed among the three choices. Figure 18 shows a comparison
of the voting results, from which we can see that enhanced images
produced by our method received most of the votes in both indoor
and outdoor categories. This comparison indicates that, from a vi-
sual perspective, our method can produce much better enhanced
images than [Hwang et al. 2012].

Our second user study tries to verify whether our method has
the capability to enhance a target effect in a statistically significant
manner. To conduct this study, we chose 30 test images from one
of the local effect datasets described in Section 7.1 as our test data.
We asked 20 participants from the first study to join our second
study. The interface was designed as follows. On top of the screen,
we show as the ground truth the enhanced image produced by the
photographer we hired, below which we show a pair of images with
the left being the original image and the right being the enhanced
image produced by our method. Then we asked the participant to
assign a score to both the input and enhanced images by considering
two criteria at the same time: (1) how closely this image conforms to
the impression given by the ground truth, (2) the visual quality of the
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(tone-mapped for visualization)

tone-mapped with HDR+
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Fig. 1. Our novel neural network architecture can reproduce sophisticated image enhancements with inference running in real time at full HD resolution on
mobile devices. It can not only be used to dramatically accelerate reference implementations, but can also learn subjective e�ects from human retouching.

Performance is a critical challenge in mobile image processing. Given a ref-
erence imaging pipeline, or even human-adjusted pairs of images, we seek
to reproduce the enhancements and enable real-time evaluation. For this,
we introduce a new neural network architecture inspired by bilateral grid
processing and local a�ne color transforms. Using pairs of input/output im-
ages, we train a convolutional neural network to predict the coe�cients of a
locally-a�ne model in bilateral space. Our architecture learns to make local,
global, and content-dependent decisions to approximate the desired image
transformation. At runtime, the neural network consumes a low-resolution
version of the input image, produces a set of a�ne transformations in bilat-
eral space, upsamples those transformations in an edge-preserving fashion
using a new slicing node, and then applies those upsampled transformations
to the full-resolution image. Our algorithm processes high-resolution im-
ages on a smartphone in milliseconds, provides a real-time view�nder at
1080p resolution, and matches the quality of state-of-the-art approximation
techniques on a large class of image operators. Unlike previous work, our
model is trained o�-line from data and therefore does not require access to
the original operator at runtime. This allows our model to learn complex,
scene-dependent transformations for which no reference implementation is
available, such as the photographic edits of a human retoucher.
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1 INTRODUCTION
The high resolution of images and videos produced by contemporary
cameras and mobile devices puts signi�cant performance pressure
on image processing algorithms, requiring sophisticated code op-
timization by skilled programmers. While systems contributions
have sought to facilitate the implementation of high-performance
executables, e.g. [Hegarty et al. 2014; Mullapudi et al. 2016; Ragan-
Kelley et al. 2012], they require programmer expertise, their runtime
cost still growswith the complexity of the pipeline, and they are only
applicable when source code is available for the �lters. Addition-
ally, because image enhancement is subjective, it is often desirable
to learn an enhancement model directly from human adjustments,
e.g. [Bychkovsky et al. 2011]. To this end, we present a machine
learning approach where the e�ect of a reference �lter, pipeline, or
even subjective manual photo adjustment is learned by a deep net-
work that can be evaluated quickly and with cost independent of the
reference’s complexity. We focus on photographic enhancements
that do not spatially warp the image or add new edges, e.g. [Aubry
et al. 2014; Hasino� et al. 2016].
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BACKGROUND

➤ Automatic Content-Aware Color and Tone Stylization [Lee et 
al. 2016]  

➤ Color and Tone Stylization, unsupervised 

➤ finding exemplar images whose color and tone style is 
compatible with a given image 
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Figure 2. The overall framework of our system.

well). Then, we stretch the luminance (L channel) to cover
the full dynamic range after clipping both the minimum
and the maximum 0.5 percent pixels of luminance levels,
and apply different transfer functions to the luminance and
chrominance components.

Chrominance Our color transfer method maps the statis-
tics of the chrominance channels of the two images. We
model the chrominance distribution of an image using a
multivariate Gaussian, and find a transfer function that
creates the output image O by mapping the Gaussian statis-
tics NS(µS ,ΣS) of the style exemplar S to the Gaussian
statistics NI(µI ,ΣI) of the input image I as:

cO(x) = T (cI(x)− µI) + µS s.t. TΣIT
⊤ = ΣS , (1)

where T is a linear transformation that maps chrominance
between the images and c(x) is the chrominance at pixel x.
Following Pitié and Kokaram [18], we solve for the color
transform using the following closed form solution:

T = Σ−1/2
I

(

Σ1/2
I ΣSΣ

1/2
I

)1/2
Σ−1/2

I . (2)

This solution is unstable for low input covariance values,
leading to color artifacts when the input has low color
variation. To avoid this, we regularize this solution by
clipping diagonal elements of ΣI as:

Σ′
I = max(ΣI ,λrI), (3)

and substitute it into Eq. (2). Here I is an identity matrix.
This formulation has the advantage that it only regularizes
colors channels with low variation without affecting the
others. We use a regularization of λr = 7.5.

Luminance We match contrast and tone using histogram
matching between the luminance channels of the input
and style exemplar images. Direct histogram matching
typically results in arbitrary transfer functions and may
produce artifacts due to non-smooth mapping or excessive
stretching/compressing of the luminance values. Instead,
we design a new parametric model of luminance mapping
that allows for strong expressiveness and regularization
simultaneously. Our transfer function is defined as:

lO(x) = g(lI(x)) =
arctan(mδ ) + arctan( lI(x)−m

δ )

arctan(mδ ) + arctan( 1−m
δ )

, (4)

where lI(x) and lO(x) are the input and output luminance
respectively, and m and δ are the two parameters of the
mapping function. m determines the inflection point of the
mapping function and δ determines the degree of luminance
stretching around the inflection point. This parametric func-
tion can represent a diverse set of tone mapping curves and
we can easily control the degree of stretching/compressing
of tone. Since the derivative of Eq. (4) is always positive
and continuous, it is guaranteed to be a smooth and mono-
tonically increasing curve. This ensures that this mapping
function generates a proper luminance mapping curve for
any set of parameters.

We extract a luminance feature, L, that represents the
luminance histogram with uniformly sampled percentiles
of the luminance cumulative distribution function (we use
32 samples). We estimate the tone-mapping parameters by
minimizing the cost function:

(m̂, δ̂) = argminm,δ∥g(LI)− L̃∥2,

s.t. L̃ = LI + (LS − LI)
τ

min(τ,|LS−LI |∞) , (5)

where LI and LS represent the input and style luminance
features, respectively. L̃ is an interpolation of the input and
exemplar luminance features and represents how closely we
want to match the exemplar luminance distribution. We set
τ to 0.4 and minimize this cost using parameter sweeping
in a branch-and-bound scheme.

Fig. 3 compares the quality of our style transfer method
against three recent methods: the N-dimensional histogram
matching technique of Pitié et al. [19], the linear Monge-
Kantarovich solution of Pitié and Kokaram [18], and the
three-band method of Bonneel et al. [4]. While each
of these algorithms has its strengths, only our method
consistently produces visually compelling results without
any artifacts. We further evaluate all these methods via a
comprehensive user study in Sec. 6.

Face exposure correction In the process of transferring
tonal distributions, our luminance mapping method can
over-darken some regions. When this happens to faces,
it detracts from the quality of the result, as humans are
sensitive to facial appearance. We fix this using a face-
specific luminance correction. We detect face regions in
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PURPOSE & EFFECT

➤ Contributions: 

➤ Understandable: network’s chooses 
can be understood and reproduced by 
users, rather a black-box. 

➤ Without pairs: without paired image 
data. 

➤ Transform into style of a photo 
collection: Instead of converting into 
a specific result, learns to transform 
an image into a certain style as 
represented by a photo collection. 

RL 
(making decision)

GAN

7



PURPOSE & EFFECT

➤ RL: Post-processing as 
a decision-making 
sequence 

X:14 • Hu, Y. et al

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/1.62

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.58

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Contrast +0.57

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Fig. 11. Example of a learned retouching operation sequence from artist A
(500px).

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/2.02

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.30

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Saturation +1.00

Fig. 12. Example of a learned retouching operation sequence from artist
B (500px). Note that di�erent from artist A, photos from artist B are more
saturated, which is reflected in this learned operation sequence.
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Fig. 12. Example of a learned retouching operation sequence from artist
B (500px). Note that di�erent from artist A, photos from artist B are more
saturated, which is reflected in this learned operation sequence.
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➤ Make decisions on： 

➤ Filter? 
Gamma\Exposure\Contrast… 

➤ parameter?
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PURPOSE & EFFECT

➤ GAN(WGAN):  

➤ discriminator tells if the image is from the target dataset or 
was generated by the generator
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Fig. 10. Learning the styles of two artists from 500px.com, using our system and CycleGAN.
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RL PART ——  MODEL

➤ Problem: P = (S,A). S is state space（RAW input and all 
intermediate results）, A is action space（filter operations, 
e.g. exposure, white balance, contrast） 

➤ Reward function r. Trajectory t = (s0,a0, … sN).  

➤ return rk: 

where γ：discount factor, places greater importance on 
rewards in the nearer future. 

➤ Policy π

X:4 • Hu, Y. et al

Certainly, feedback is critical for choosing an operation and its
parameters. A photographer cannot in general determine a full
operation sequence from viewing only the original input image. We
postulate that an automatic retouching system would also bene�t
from feedback and canmore e�ectively learn how to select and apply
a single operation at a time based on feedback than to infer the �nal
output directly from the input. Moreover, modeling retouching as a
sequence of standard post-processing operations helps to maintain
the photorealism of the image and makes the automatic process
more understandable to users.
We note that the notion of learning an operation sequence was

used in a learning-to-rankmodel for automatic color adjustment [Yan
et al. 2014]. Unlike their supervised approach which is trained on
collected sequences of editing operations from expert photogra-
phers, our system requires much less supervision, needing only a
set of retouched photos for training.

3.2 Post-processing as a decision-making sequence
Based on this motivation, the retouching process can naturally
be modeled as a sequential decision-making problem, which is a
problem commonly addressed in reinforcement learning (RL). RL is
a subarea of machine learning related to how an agent should act
within an environment to maximize its cumulative rewards. Here,
we brie�y introduce basic concepts from RL and how we formulate
retouching as an RL problem.
We denote the problem as P = (S,A) with S being the state

space and A the action space. Speci�cally in our task, S is the
space of images, which includes the RAW input image and all inter-
mediate results in the automatic process, while A is the set of all
�lter operations. A transition function p : S ⇥A ! S maps in-
put state s 2 S to its outcome state s 0 2 S after taking action a 2 A.
State transitions can be expressed as si+1 = p(si ,ai ). Applying a
sequence of �lters to the input RAW image results in a trajectory
of states and actions:

t = (s0,a0, s1,a1, . . . , sN�1,aN�1, sN )
where si 2 S, ai 2 A are states and actions, N is the number of
actions, and sN is the stopping state, as shown in Figure 3. A central
element of RL is the reward function, r : S ⇥ A ! R, which
evaluates actions given the state. Our goal is to select a policy �

that maximizes the accumulated reward during the decision-making

Softwares, e.g.
Photoshop or
Lightroom

Photographer
or Colorist

Adjustments

Real-time Feedback

Fig. 2. Information flow in interactive photo post-processing. Our method
follows this scheme by modeling retouching as a decision-making sequence.

process. For this, we use a stochastic policy agent, where the policy
� : S ! P(A) maps the current state s 2 S to P(A), the set of
probability density functions over the actions. When an agent enters
a state, it samples one action according to the probability density
functions, receives the reward, and follows the transition function
to the next state.
Given a trajectory t = (s0,a0, s1,a1, . . . , sN ), we de�ne the re-

turn r
�
k as the summation of discounted rewards after sk :

r
�
k =

N�k’
k 0=0

�
k 0
r (sk+k 0 ,ak+k 0), (1)

where � 2 [0, 1] is a discount factor which places greater impor-
tance on rewards in the nearer future. To evaluate a policy, we de�ne
the objective

� (� ) = E
s0⇠S0
t⇠�

⇥
r
�
0 |�

⇤
, (2)

where s0 is the input image, and S0 is the input dataset. Intuitively,
the objective describes the expected return over all possible trajec-
tories induced by the policy � . The goal of the agent is to maximize
the objective � (� ), which is related to the �nal image quality by the
reward function r , as images (states) with high quality are more
greatly rewarded.

The expected total discounted rewards on states and state-action
pairs are de�ned by state-value functions V , and action-value
functions Q :

V
� (s) = E

s0=s
t⇠�

⇥
r
�
0
⇤

(3)

Q
� (s,a) = E

s0=s
a0=a
t⇠�

⇥
r
�
0
⇤
. (4)

To �t our problem into this RL framework, we decompose actions
into two parts: a discrete selection of �lter a1 and a continuous
decision on �lter parameters a2. The policy also consists of two
parts: � = (�1,�2). �1 is a function that takes a state and returns
a probability distribution over �lters, i.e. choices of a1; and �2 is
a function that takes (s,a1) and then directly generates a2. Note
that �1 is stochastic and requires sampling. Since there are practical
challenges in sampling a continuous random variable, we follow
recent practices by treating �2 deterministically, as described in
section 5.2.

4 FILTER DESIGN
In this section, we discuss the design of �lters, i.e. the action space
A in our model.

4.1 Design Principles
For our system, we require the designs to adhere to the following
properties.

Di�erentiable. For gradient-based optimization of the policy � ,
the �lters need to be di�erentiable with respect to their �lter param-
eters. This di�erentiability is needed to allow training of the CNN by
backpropagation. Clearly, not all �lters can be trivially modeled as
basic neural network layers; therefore, we propose approximations

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.
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RL PART ——  MODEL

➤ Hope to maximize objective J(π) (s0 is input)： 

➤ decompose actions into two parts: 

➤ a1 : select filters 

➤ a2 : a continuous decision on filter parameters 

➤ decompose policy into two parts: 

➤ π1 : takes (s) and decide a1 

➤ π2 : takes (s,a1) and decide a2

X:4 • Hu, Y. et al

Certainly, feedback is critical for choosing an operation and its
parameters. A photographer cannot in general determine a full
operation sequence from viewing only the original input image. We
postulate that an automatic retouching system would also bene�t
from feedback and canmore e�ectively learn how to select and apply
a single operation at a time based on feedback than to infer the �nal
output directly from the input. Moreover, modeling retouching as a
sequence of standard post-processing operations helps to maintain
the photorealism of the image and makes the automatic process
more understandable to users.
We note that the notion of learning an operation sequence was

used in a learning-to-rankmodel for automatic color adjustment [Yan
et al. 2014]. Unlike their supervised approach which is trained on
collected sequences of editing operations from expert photogra-
phers, our system requires much less supervision, needing only a
set of retouched photos for training.

3.2 Post-processing as a decision-making sequence
Based on this motivation, the retouching process can naturally
be modeled as a sequential decision-making problem, which is a
problem commonly addressed in reinforcement learning (RL). RL is
a subarea of machine learning related to how an agent should act
within an environment to maximize its cumulative rewards. Here,
we brie�y introduce basic concepts from RL and how we formulate
retouching as an RL problem.
We denote the problem as P = (S,A) with S being the state

space and A the action space. Speci�cally in our task, S is the
space of images, which includes the RAW input image and all inter-
mediate results in the automatic process, while A is the set of all
�lter operations. A transition function p : S ⇥A ! S maps in-
put state s 2 S to its outcome state s 0 2 S after taking action a 2 A.
State transitions can be expressed as si+1 = p(si ,ai ). Applying a
sequence of �lters to the input RAW image results in a trajectory
of states and actions:

t = (s0,a0, s1,a1, . . . , sN�1,aN�1, sN )
where si 2 S, ai 2 A are states and actions, N is the number of
actions, and sN is the stopping state, as shown in Figure 3. A central
element of RL is the reward function, r : S ⇥ A ! R, which
evaluates actions given the state. Our goal is to select a policy �

that maximizes the accumulated reward during the decision-making
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Lightroom
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Real-time Feedback

Fig. 2. Information flow in interactive photo post-processing. Our method
follows this scheme by modeling retouching as a decision-making sequence.

process. For this, we use a stochastic policy agent, where the policy
� : S ! P(A) maps the current state s 2 S to P(A), the set of
probability density functions over the actions. When an agent enters
a state, it samples one action according to the probability density
functions, receives the reward, and follows the transition function
to the next state.
Given a trajectory t = (s0,a0, s1,a1, . . . , sN ), we de�ne the re-

turn r
�
k as the summation of discounted rewards after sk :

r
�
k =

N�k’
k 0=0

�
k 0
r (sk+k 0 ,ak+k 0), (1)

where � 2 [0, 1] is a discount factor which places greater impor-
tance on rewards in the nearer future. To evaluate a policy, we de�ne
the objective

� (� ) = E
s0⇠S0
t⇠�

⇥
r
�
0 |�

⇤
, (2)

where s0 is the input image, and S0 is the input dataset. Intuitively,
the objective describes the expected return over all possible trajec-
tories induced by the policy � . The goal of the agent is to maximize
the objective � (� ), which is related to the �nal image quality by the
reward function r , as images (states) with high quality are more
greatly rewarded.

The expected total discounted rewards on states and state-action
pairs are de�ned by state-value functions V , and action-value
functions Q :

V
� (s) = E

s0=s
t⇠�

⇥
r
�
0
⇤

(3)

Q
� (s,a) = E

s0=s
a0=a
t⇠�

⇥
r
�
0
⇤
. (4)

To �t our problem into this RL framework, we decompose actions
into two parts: a discrete selection of �lter a1 and a continuous
decision on �lter parameters a2. The policy also consists of two
parts: � = (�1,�2). �1 is a function that takes a state and returns
a probability distribution over �lters, i.e. choices of a1; and �2 is
a function that takes (s,a1) and then directly generates a2. Note
that �1 is stochastic and requires sampling. Since there are practical
challenges in sampling a continuous random variable, we follow
recent practices by treating �2 deterministically, as described in
section 5.2.

4 FILTER DESIGN
In this section, we discuss the design of �lters, i.e. the action space
A in our model.

4.1 Design Principles
For our system, we require the designs to adhere to the following
properties.

Di�erentiable. For gradient-based optimization of the policy � ,
the �lters need to be di�erentiable with respect to their �lter param-
eters. This di�erentiability is needed to allow training of the CNN by
backpropagation. Clearly, not all �lters can be trivially modeled as
basic neural network layers; therefore, we propose approximations
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➤ Filter should be:  

➤ Differentiable: for back 
propogation. 

➤ Resolution-
independent:  so that 
we can train on 64×64 
px and run the model on 
6000×4000 px. 

➤ Understandable: which 
means filters should have 
intuitive meaning。
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s0

s1

s2

s3

s4

s5

a0

a1

a2

a3

a4

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Contrast �0.95

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.81

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/1.16

Fig. 3. An example trajectory of states (images) and actions (filter opera-
tions).

of such �lters, such as piecewise linear functions in place of smooth
curves, to incorporate them within our framework.

Resolution-independent. Modern digital sensors capture RAW im-
ages at a high resolution (e.g., 6, 000 ⇥ 4, 000px) that is computa-
tionally impractical for CNN processing. Fortunately, most editing
adjustments can be determined without examining an image at
such high resolutions, thus allowing us to operate on downsampled
versions of the RAW images. Speci�cally, we determine �lter pa-
rameters on a low-resolution (64 ⇥ 64) version of a RAW image and
then apply the same �lter on the original high-resolution image.
This strategy is similar to that used by Gharbi et al. [2017] to reduce
computation on mobile devices. To this end, the �lters need to be
resolution-independent.

Note that most GAN-based image generation techniques, like Cy-
cleGAN [Zhu et al. 2017], generate images of resolution at around
512 ⇥ 512px, since higher resolutions lead to not only greater com-
putational costs but also a signi�cantly more challenging learning
task that requires greater training time and training data. We exper-
imentally compare our model to CycleGAN in section 6.1.

Understandable. The �lters should represent operations that have
an intuitive meaning, so that the generated operation sequence
can be understood by users. This would be more interesting and
instructive to users than a “black-box” result. It would also enable

Neural
Network

Expo. W.B.
Gam. Satu.
Color Tone
Level Cst.

High-res Input Low-res Input

High-res Output Low-res Output

Contrast +0.95

action

gradient

im
g.

grad.

Fig. 4. The design principles of our filters (Contrast filter in this example):
1) They are di�erentiable and can thereby provide gradients for neural
network training; 2) Arbitrary-resolution images can be processed with
the filter; 3) What the filter does should be understandable by a human
user.
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RL PART —— FILTER DESIGN

➤ input PI = (rI, gI, bI)      →      output PO = (rO,gO,bO)

Operation Parameters Filter

Exposure E PO = 2E PI

White Balance Wr,Wg,Wb PO = (Wr rI , Wg gI , Wb bI)

Color curves Ci,k PO = (LCr(rI ), LCg(gI ) , LCb(gI ))

requires special treatment for its filter to be differentiable 
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➤ Curve（曲线）： 

➤ using L parematers: {t0,t1,…,tL-1}, Tk = ∑ ti , points on the 
curves are represented as (k/L, Tk/TL) 

➤ find that L = 8 is sufficeint.

X:6 • Hu, Y. et al

Table 1. Simple pixel-wise filters. For more details about the filters, please
refer to the supplemental material.

Operation Parameters Filter
Exposure E: exposure value pO = 2EpI
White Balance Wr ,W� ,Wb : factors pO = (Wr rI ,W��I ,WbbI )
Color curves Ci,k : curve param. pO = (LCr (rI ),LC� (�I ),LCb (bI ))

them to further adjust the parameters if they want. Though an
alternative is to generate a black-box result and then let users apply
edits to it, the black-box transformation might not be invertible,
leaving users unable to undo any unwanted e�ects.
These three design principles are illustrated in Figure 4.

4.2 Filter Details
Based on the aforementioned design principles, we developed �l-
ters that map an input pixel value pI = (rI ,�I ,bI ) to an output
pixel value pO = (rO ,�O ,�O ). Standard color and tone modi�ca-
tions, such as exposure change, white balancing, and color curve
adjustment, can be modeled by such pixel-wise mapping functions.
Examples of operations implemented in our system are listed in
Table 1 and visualized in Figure 5. Color curve adjustment, i.e., a
channel-independent monotonic mapping function, requires spe-
cial treatment for its �lter to be di�erentiable, as described in the
following.

Curve representation. Weapproximate curves asmonotonic piecewise-
linear functions. Suppose we represent a curve using L parameters,
denoted as {t0, t1, . . . , tL�1}. With the pre�x-sum of parameters de-
�ned as Tk =

Õk�1
l=0 tl , the points on the curves are represented as

(k/L,Tk/TL). For this representation, an input intensity x 2 [0, 1]
will be mapped to

f (x) = 1
TL

L�1’
i=0

clip(L · x � i, 0, 1)tk .

Note that this mapping function is now represented by di�eren-
tiable parameters, making the function di�erentiable with respect
to both x and the parameters {tl }. Since color adjustments by pro-
fessionals are commonly subtle, color curves are typically close
to identity. We �nd that eight linear segments are su�cient for
modeling typical color curves.

5 LEARNING
Given the decision-making model for retouching and the di�eren-
tiable �lters that make optimization possible, we discuss in this sec-
tion how the agent is represented by deep neural networks (DNNs),
how these networks are trained, and how the reward related to the
generated image quality is evaluated using adversarial learning. The
whole training cycle is shown in Alg. 1, and we elaborate on the
details in the following subsections.

5.1 Function approximation using DNNs
DNNs are commonly deployed as an end-to-end solution for ap-
proximating functions used in complex learning tasks with plentiful

data. Since convolutional neural networks (CNN) are especially
powerful in image-based understanding [Krizhevsky et al. 2012], we
use CNNs in our work. Among the CNNs are two policy networks,
which map the images into action probabilities �1 (after softmax) or
�lter parameters �2 (after tanh). For policies �1 and �2, the network
parameters are denoted as �1 and �2, respectively, and we wish to
optimize � = (�1,�2) so that the objective � (�� ) is maximized. In ad-
dition to the two policy networks, we also learn a value network and
a discriminator network, which facilitate training as later described.

All of these networks share basically the same architecture illus-
trated in Figure 7, while having di�erent numbers of output neurons
according to what they output. For each CNN, we use four convo-
lution layers, each with �lters of size 4 ⇥ 4 and stride 2. Appended
to this is a fully connected layer to reduce the number of outputs
to 128, and then a �nal fully connected layer that further regresses
the features into parameters we need from each network. The de-
terministic policy networks (one for each �lter) for �lter parameter
estimation share the convolutional layers, so that the computation
is made more e�cient. CNNs are largely tailored for hierarchical
visual recognition, and we found that naively using them results in
unsatisfactory learning of agent policies and global statistics. There-
fore, following [Silver et al. 2016], we concatenate extra (spatially
constant) feature planes as additional color channels in the input.
For the discriminator network, the additional feature planes are
for the average luminance, contrast and saturation of the entire
image; for the policy and value networks, the feature planes are
eight boolean (zero or one) values that indicate which �lters have
been used, and another plane denotes the number of steps that have
been taken so far in the retouching process.

5.2 Policy network training
The policy networks are trained using policy gradient methods,
which employ gradient descent to optimize parameterized policies
with respect to the expected return. As the policy � consists of two
parts (�1,�2) corresponding to the two decision-making steps (i.e.,
�lter and parameter selection), they are learned in an interleaved
manner.
For �lter selection, we sample �1, which is a discrete probabil-

ity distribution function �1(Fk ) = P[a1 = Fk ] over all choices of
�lters F = {F1, F2, . . . , Fn }. Unlike other common di�erentiable
operations including convolution or activation, the partial deriv-
ative @� (� )/@� (Fk ) cannot be directly calculated, which presents
a challenge for backpropagation. We address this by applying the
policy gradient theorem [Sutton et al. 2000] to obtain an unbiased
Monte Carlo estimate of the gradient of � (� ) with respect to �1.
For �lter parameter selection, policy �2 is deterministic, so that it
is easier to optimize in a continuous space, and we formulate its
gradient using the deterministic policy gradient theorem [Silver
et al. 2014]. The policy gradients are thus expressed as

r�1 � (�� ) = E
s⇠��

a1⇠�1(s)
a2=�2(s,a1)

[r�1 log�1(a1 |s)Q(s, (a1,a2))], (5)

r�2 � (�� ) = E
s⇠��

a2=�2(s,a1)

[ra2Q (s, (a1,a2))r�2�2(s,a1)], (6)
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Fig. 5. Visualizations of the eight di�erentiable filters. Gradients are displayed with a +0.5 o�set so that negative values can be properly viewed. For the
white balance filter, we visualize the gradient with respect to the red channel parameter; for the tone/color curves, we di�erentiate with respect to the first
parameter of the curve/red curve.
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Fig. 6. Representation of a curve using regressed parameters.

where �� is the discounted state distribution de�ned as

�
� (s) =

1’
k=0
P(sk = s)�k ,

and Q is the value function de�ned in Eqn. 4.
To calculate these gradients, we apply the actor-critic algorithm [Sut-

ton et al. 2000], where the actor is represented by the policy networks
and the critic is the value network, which learns the state-value
function V

� : S ! R of Eqn. 3 for estimating expected returns.
With the critic, the action-value function Q

� can be computed by
unfolding its de�nition (Eqn. 4) and expressing it in terms of the
state-value function:

Q
� (s,a) = E

s0=s
a0=a
t⇠�

[r (s0,a0) + �V � (p(s0,a0))].

Plugging this into Eqn. 6 gives us the supervision signal for learning
�2.

We optimize the value network by minimizing

L� = E
s⇠�� ,a⇠� (s)


1
2
�
2
�
,

where� is the temporal di�erence (TD) error:� = r (s,a)+�V (p(s,a))�
V (s). Note that � represents the Monte Carlo estimate of the ad-
vantage A(s,a) = Q(s,a) �V (s), i.e., how much the value of action
a exceeds the expected value of actions at state s . For calculating
the gradient of �1 in Eqn. 5, the Q-value Q(s,a) can be substituted
by the advantage A(s,a), which e�ectively reduces sample variance
and can conveniently be computed as the TD error � . Note that the
gradient of �2 requires no Monte Carlo estimation, thus we directly
calculate it by applying the chain rule on the gradient of Q , instead
of using the advantage A.

Reward and discount factor. The ultimate goal is to obtain the
best �nal result after all operations. For this, we set the reward as
the incremental improvement in the quality score (modeled by a
discriminator network in the following subsection) plus penalty
terms (described in Sec. 5.4). We set the discount factor as � = 1 and
allow the agent to make �ve edits to the input image. This number
of edits was chosen to balance expressiveness and succinctness of
the operation sequence.

5.3 �ality evaluation via adversarial learning
To generate results as close to the target dataset as possible, we
employ a GAN, which is composed of two parts, namely a gener-
ator (i.e., the actor of the previous subsection in our case) and a
discriminator. The two parts are optimized in an adversarial manner:
the discriminator is trained to tell if the image is from the target
dataset or was generated by the generator; the actor aims to “fool”
the discriminator by generating results as close to the target dataset
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Exposure: A White-Box Photo Post-Processing Framework • X:17

SUPPLEMENTAL DOCUMENT
Filter Design Details
Contrast, Saturation, and Black & White Filters. These �lters are

designed similarly, with an input parameter that sets the linear
interpolation between the original image and the fully enhanced
image, i.e.,

pO = (1 � p) · pI + p · Enhanced(pI ).
For Contrast:

EnhancedLum(pI ) =
1
2
(1 � cos(� ⇥ (Lum(pI )))),

Enhanced(pI ) = pI ⇥
EnhancedLum(pI )

Lum(pI )
,

where the luminance function Lum(p) = 0.27pr + 0.67p� + 0.06pb .
For Saturation:

EnhancedS(s,�) = s + (1 � s) ⇥ (0.5 � |0.5 �� |) ⇥ 0.8,

Enhanced(pI ) = HSVtoRGB(H (pI ),EnhancedS(S(pI ),V (pI )).V (pI )),
where H , S , and V are HSV channels of a pixel.

For Black and White:

Enhanced(pI ) = RGB(Lum(pI ), Lum(pI ), Lum(pI )).

Tone and Color Curves. We use a di�erentiable piecewise-linear
mapping function to represent curves, as detailed in the main paper.
For tone curves, the same curve is applied to the image, and the slope
of each segment in the curve is in [0.5, 2.0]. For color, a separate
curve is applied to each of the three color channels, with slopes in
[0.9, 1.1]. The bounds on the curve slopes re�ect the fact that human
artists do not usually apply sharp color curves, but sometimes may
use a strong tone curve.

Experimental Details
MIT-Adobe FiveKDataset Partitions. TheMIT-Adobe FiveK dataset

is randomly separated into three parts, which are listed in the data
�les FiveK_train1.txt, FiveK_train2.txt and FiveK_test.txt. For
the test set, we select 100 random images employed in the user study
on AMT, as listed in �le FiveK_test_AMT.txt.

Histogram Intersection Details. The quantities for histogram in-
tersection are de�ned as follows:

• Luminance is de�ned as the mean pixel luminance (de�ned
previously as Lum.)

• Contrast is de�ned to be twice the variance of pixel lumi-
nance.

• Saturation is de�ned as the mean pixel saturation (the “S”
value in the HSL color space).

The results are separated into 32 equal bins within the interval
[0, 1], i.e. [0, 1/32), [1/32, 2/32), . . .
However, with only 1, 000 sample images, only about 31.25 im-

ages will be placed in each bin on average, resulting in signi�cant
measurement noise. Therefore, we augment the data for histogram
intersection by cropping 16 patches in each image, and measure the
histogram quantities on these 16, 000 image patches. Please refer
to the accompanying code (histogram_intersection.py) for the
detailed algorithm on measuring this error metric.

Fig. 19. Our AMT UIs for user studies.

Amazon Mechanic Turk. The AMT interfaces for evaluation are
shown in Figure 19.

Human performance measurement. We present the users a short
video (with subtitles) demonstrating how our software should be
used. The user studies take about 3 minutes per image (roughly 30
minutes for each user to retouch 10 images). We do not enforce any
time limit on the task. All 10 users are highly educated and their
ages range from 20 to 30.

Scalability in Resolution. The ability to process high-resolution
images is critical in professional photography. In Figure 20, 21 and 22,
we show high-resolution results from our method, Pix2pix, and
CycleGAN. It is clear that our method produces images with the
highest quality on high-resolution images.
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Fig. 5. Visualizations of the eight di�erentiable filters. Gradients are displayed with a +0.5 o�set so that negative values can be properly viewed. For the
white balance filter, we visualize the gradient with respect to the red channel parameter; for the tone/color curves, we di�erentiate with respect to the first
parameter of the curve/red curve.
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Fig. 6. Representation of a curve using regressed parameters.

where �� is the discounted state distribution de�ned as

�
� (s) =

1’
k=0
P(sk = s)�k ,

and Q is the value function de�ned in Eqn. 4.
To calculate these gradients, we apply the actor-critic algorithm [Sut-

ton et al. 2000], where the actor is represented by the policy networks
and the critic is the value network, which learns the state-value
function V

� : S ! R of Eqn. 3 for estimating expected returns.
With the critic, the action-value function Q

� can be computed by
unfolding its de�nition (Eqn. 4) and expressing it in terms of the
state-value function:

Q
� (s,a) = E

s0=s
a0=a
t⇠�

[r (s0,a0) + �V � (p(s0,a0))].

Plugging this into Eqn. 6 gives us the supervision signal for learning
�2.

We optimize the value network by minimizing

L� = E
s⇠�� ,a⇠� (s)


1
2
�
2
�
,

where� is the temporal di�erence (TD) error:� = r (s,a)+�V (p(s,a))�
V (s). Note that � represents the Monte Carlo estimate of the ad-
vantage A(s,a) = Q(s,a) �V (s), i.e., how much the value of action
a exceeds the expected value of actions at state s . For calculating
the gradient of �1 in Eqn. 5, the Q-value Q(s,a) can be substituted
by the advantage A(s,a), which e�ectively reduces sample variance
and can conveniently be computed as the TD error � . Note that the
gradient of �2 requires no Monte Carlo estimation, thus we directly
calculate it by applying the chain rule on the gradient of Q , instead
of using the advantage A.

Reward and discount factor. The ultimate goal is to obtain the
best �nal result after all operations. For this, we set the reward as
the incremental improvement in the quality score (modeled by a
discriminator network in the following subsection) plus penalty
terms (described in Sec. 5.4). We set the discount factor as � = 1 and
allow the agent to make �ve edits to the input image. This number
of edits was chosen to balance expressiveness and succinctness of
the operation sequence.

5.3 �ality evaluation via adversarial learning
To generate results as close to the target dataset as possible, we
employ a GAN, which is composed of two parts, namely a gener-
ator (i.e., the actor of the previous subsection in our case) and a
discriminator. The two parts are optimized in an adversarial manner:
the discriminator is trained to tell if the image is from the target
dataset or was generated by the generator; the actor aims to “fool”
the discriminator by generating results as close to the target dataset
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➤ Two policy networks 

➤ map the images into action probabilities π1 (after softmax) 

➤ map the images into filter parameters π2 (after tanh) 

➤ value（RL，actor-critic algorithm ） 

➤ discriminator（GAN） 

➤ share basically the same architectre:
X:8 • Hu, Y. et al

64×64×3
and
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#extra planes)
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tanh activation
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56 = 1
no activation
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56 = 1
no activation

Stochastic policy:
56 = #filters
softmax activation

Network Architecture
(for policy/value/critic networks)

56

LeakyReLU activation after each layer (leak=0.2)

Fig. 7. The general network structure shared by all networks in our system.

ALGORITHM 1: Training procedure
Input: Input datasets DRAW and Dretouched; batch size b = 64, learning

rates �� = �� = 5 ⇥ 10�5, �� = 5 ⇥ 10�4, ncritic = 5
Output: Actor model � = (�1, �2), critic model � , and discriminator model

w
Initialize replay memory with 2, 048 RAW images;
while � has not converged do

for i in 1..ncritic do
Sample a batch of b �nished images from replay memory;
Sample a batch of b target images from Dtarget;
w  w � �w rwLw ;

end
Draw a batch B of b images from replay memory;
Delete images in the batch that are already �nished;
Re�ll deleted images in the batch using those from DRAW;
Apply one step of operation to the images: B0 = Actor(B);
�1  �1 + �� r�1 � (�� );
�2  �2 + �� r�2 � (�� );
�  � � �� r�L� ;
Put new images B0 back into replay memory;

end

as possible, so that the discriminator cannot distinguish the di�er-
ence. The two networks are trained simultaneously, and an ideal
equilibrium is achieved when the generated images are close to the
targets.
In this work, we use a popular variant of the traditional GAN

called the Wasserstein GAN (WGAN) [Arjovsky et al. 2017], which
uses the Earth Mover’s Distance (EMD) to measure the di�erence
between two probability distributions. It has been shown to stabi-
lize GAN training and avoid vanishing gradients. The loss for the

discriminator1 D is de�ned as

Lw = E
s 2��

[D(s)] � E
s 2target dataset

[D(s)] . (7)

The discriminator D is modeled as a CNN with parameters denoted
as w . The “negative loss” (quality score) for the generator, whose
increment serves as a component of the reward in our system, is

� Lactor = E [D(s)] . (8)

Intuitively, the discriminator aims to give large values for images in
the target collection, and small ones to retouched images produced
by the generator. On the other hand, the actor (generator) aims to
submit an output at a state where the discriminator gives a larger
value, meaning that the �nal image appears more similar to those
in the target dataset. Following [Gulrajani et al. 2017], we use a
gradient penalty instead of weight clipping in the discriminator.

5.4 Training stabilization
Both RL algorithms and GANs are known to be hard to train. To
address this issue, we utilized the following strategies to stabilize
the training process.

Exploitation vs. exploration. Awell-known tradeo� exists between
exploitation and exploration, namely whether to devote more atten-
tion on improving the current policy or to try a new action in search
of potentially greater future reward. This is especially challenging
for our two-stage decision making problem, as focusing on one
�lter may lead to under-exploitation of �lter parameter learning for
other �lters. To avoid such local minima, we penalize �1 if its action

1The discriminator is referred to as the “critic” in [Arjovsky et al. 2017]. We use the
term “discriminator” here to distinguish it from the critic in our actor-critic framework.
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➤ Convolution: 4×4 and stride 2 

➤ the first FC: reduce the number of outputs to 128 
➤ the final FC: get parameters we need 

➤ Naively using CNNs results in unsatisfactory learning of agent policies and global statistics. Therefore, we concatenate 
extra (spatially constant) feature planes as additional color channels in the input.
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Fig. 7. The general network structure shared by all networks in our system.

ALGORITHM 1: Training procedure
Input: Input datasets DRAW and Dretouched; batch size b = 64, learning

rates �� = �� = 5 ⇥ 10�5, �� = 5 ⇥ 10�4, ncritic = 5
Output: Actor model � = (�1, �2), critic model � , and discriminator model

w
Initialize replay memory with 2, 048 RAW images;
while � has not converged do

for i in 1..ncritic do
Sample a batch of b �nished images from replay memory;
Sample a batch of b target images from Dtarget;
w  w � �w rwLw ;

end
Draw a batch B of b images from replay memory;
Delete images in the batch that are already �nished;
Re�ll deleted images in the batch using those from DRAW;
Apply one step of operation to the images: B0 = Actor(B);
�1  �1 + �� r�1 � (�� );
�2  �2 + �� r�2 � (�� );
�  � � �� r�L� ;
Put new images B0 back into replay memory;

end

as possible, so that the discriminator cannot distinguish the di�er-
ence. The two networks are trained simultaneously, and an ideal
equilibrium is achieved when the generated images are close to the
targets.
In this work, we use a popular variant of the traditional GAN

called the Wasserstein GAN (WGAN) [Arjovsky et al. 2017], which
uses the Earth Mover’s Distance (EMD) to measure the di�erence
between two probability distributions. It has been shown to stabi-
lize GAN training and avoid vanishing gradients. The loss for the

discriminator1 D is de�ned as

Lw = E
s 2��

[D(s)] � E
s 2target dataset

[D(s)] . (7)

The discriminator D is modeled as a CNN with parameters denoted
as w . The “negative loss” (quality score) for the generator, whose
increment serves as a component of the reward in our system, is

� Lactor = E [D(s)] . (8)

Intuitively, the discriminator aims to give large values for images in
the target collection, and small ones to retouched images produced
by the generator. On the other hand, the actor (generator) aims to
submit an output at a state where the discriminator gives a larger
value, meaning that the �nal image appears more similar to those
in the target dataset. Following [Gulrajani et al. 2017], we use a
gradient penalty instead of weight clipping in the discriminator.

5.4 Training stabilization
Both RL algorithms and GANs are known to be hard to train. To
address this issue, we utilized the following strategies to stabilize
the training process.

Exploitation vs. exploration. Awell-known tradeo� exists between
exploitation and exploration, namely whether to devote more atten-
tion on improving the current policy or to try a new action in search
of potentially greater future reward. This is especially challenging
for our two-stage decision making problem, as focusing on one
�lter may lead to under-exploitation of �lter parameter learning for
other �lters. To avoid such local minima, we penalize �1 if its action

1The discriminator is referred to as the “critic” in [Arjovsky et al. 2017]. We use the
term “discriminator” here to distinguish it from the critic in our actor-critic framework.
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RL PART —— LEARNING

➤ For π1: 

➤ Softmax → which filter to use 

➤ extra feature planes(64×64×3): average luminance, contrast and 
saturation 

➤ For π2 (one for each filter share the convolutional layers): 

➤ Tanh → filter parameters 

➤ extra feature planes(64×64×9):  8 boolean (which filters have 
been used) & the number of steps that have been taken 

➤ For Value Net (actor-critic RL architecture): 

➤ extra feature planes(64×64×9): 8 boolean (which filters have 
been used) & the number of steps that have been taken
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RL PART —— LEARNING

➤ Policy network training: 

➤ J(π1) ：Monte-Carlo policy gradient 

➤ J(π2) ：Deterministic policy gradient 

➤ using actor-critic algorithm to calculate 

➤ Set the discount factor as = 1 

➤ allow the agent to make 5 edits to the input image
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GAN PART —— LEARNING

➤ WGAN + gradient penalty
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TRAINING STABILIZATION 

➤ we utilized the following strategies： 

➤ Exploitation vs.exploration: choices between (i) devoting 
more attention on improving the current policy (ii) trying a 
new action in search of potentially greater future reward 

➤ Penalize π1 if its proposal distribution is too concentrated 

➤ if the agent uses a filter twice, the second usage will incur 
an additional penalty of -1. 

Exposure: A White-Box Photo Post-Processing Framework • X:9

proposal distribution is too concentrated, i.e., has low entropy. This
is done by reducing its reward:

R
0 = R � 0.05 ©≠

´
log |F | +

’
F 2F

�1(F ) log�1(F )™Æ
¨
.

In addition, we found that the agent may use a �lter repeatedly
during a retouching process, such as by applying two consecutive
exposure adjustments rather than combining them into a single step.
For a more concise retouching solution, we “teach” the agent to
avoid actions like this by penalizing �lter reuse: if the agent uses
a �lter twice, the second usage will incur an additional penalty
of �1. To implement this, the agent needs to know what �lters
have been applied earlier in the process, so we append this usage
information as additional channels in the image (denoted as state
planes in Fig. 7). Encouraging the agent to exploit each �lter to its
maximum potential also leads to greater exploration of di�erent
�lters.

Experience Replay. Trajectories at consecutive time steps in the
training process are highly correlated. Since such temporally un-
varied training data can drive the network to a local minimum, we
improve training stability through the use of experience replay [Lin
1993], where previously processed states are randomly sampled
from the replay memory of 2, 048 images and used in training. This
strategy helps to reduce sample correlation and stabilizes training. In
our adversarial learning setting, this approach also helps to reduce
model oscillation as observed in [Shrivastava et al. 2016].

6 RESULTS
In this section, we present implementation details, a validation, and
applications of our system.

Implementation details. TensorFlow [Abadi et al. 2015], a deep
learning framework which provides automatic di�erentiation, is
used to implement our system. Following the design of �lters pre-
sented in Section 4, the retouching steps are represented as basic
di�erentiable arithmetic operations. For estimation of retouching
actions and parameters, we downsample the high-resolution in-
put image to 64 ⇥ 64px . The estimated actions and parameters are
subsequently applied to the full-resolution image at run time.
All of the networks are optimized using Adam [Kingma and Ba

2015], with a base learning rate of 5 ⇥ 10�5 for both of the policy
networks and the discriminator, and 5 ⇥ 10�4 is used for the value
network. During training, the base learning rate is exponentially
decayed to 10�3 of the original value. Training takes less than 3
hours for all experiments.

E�ciency and model size. Thanks to the resolution-independent
�lter design, the computation of our method is fast: an unoptimized
version takes 30ms for inference on an NVIDIA TITAN X (Maxwell)
GPU. The model size is small (< 30MB) and therefore can be conve-
niently shipped with a mobile application or digital camera. This
opens up the possibility of providing users with automatically re-
touched images in the camera view�nder in real time.

Datasets. We utilize two sources of training data:

• The MIT-Adobe FiveK Dataset. Bychkovsky et al. [2011]
compiled a photo dataset consisting of 5, 000 RAW images
and retouched versions of each by �ve experts. In this work,
we randomly separate the dataset into three parts: (part 1)
2, 000 input RAW images, (part 2) 2, 000 retouched images
by retoucher C, and (part 3) 1, 000 input RAW images for
testing. The three parts have no intersection with each
other.

• The 500px Dataset. We crawled professionally retouched
photos from two artists on 500px.com. The two sets of data
have relatively consistent styles, and are comprised of 369
and 397 photos each.

Error Metrics. The novel learning framework enables our system
to take advantage of unpaired training data, which requires error
metrics di�erent from previous work.
It is shown in [Hwang et al. 2012] and that the l2 loss may not

accurately re�ect visual quality. This problem is especially apparent
when a dataset exhibits multi-modal appearance or style, such as
black-and-white apples retouched into red (e.g., RGB = (1, 0, 0)) or
green (RGB = (0, 1, 0)) with a 50% probability for each. As pointed
out in [Isola et al. 2016; Pathak et al. 2016; Zhang et al. 2016], use
of simple loss functions like l1 or l2 can lead to “blurry” results for
image generation. For the apples example, a CNN with an l2 loss
will end up generating yellow (RGB = (0.5, 0.5, 0)) apples, which
minimizes the loss but may produce styles that do not even exist in
the dataset. Multi-modality naturally exists in retouching, since the
same artist may retouch an image in di�erent ways. The inconsistent
nature of retouching is exhibited in the MIT-Adobe FiveK dataset
and was also observed in [Yan et al. 2016].

Therefore, even if input-output pairs do exist for some tasks, the
l2 loss may not be a suitable learning metric. However, how to auto-
matically evaluate the perceptual quality of style learning remains
an open problem. Though such metrics are di�cult to design and
are sometimes unreliable, for development and debugging purposes,
it would still be good to have an automatic way to roughly measure
howwell the model �ts the target data. Toward this end, we evaluate
the similarity of generated images to target images based on their
distributions of image properties. In [Isola et al. 2016], the distances
of L, a, b distributions are measured using the intersections of their
histograms in the output and target datasets. In our work, we use
luminance, contrast, saturation as three descriptive features of
image styles, and measure the distance of their distributions in the
output and target images using histogram intersections. A detailed
explanation of this metric is given in the supplemental document.
In addition to histogram intersections, we employ user studies

via Amazon Mechanical Turk (AMT) for perceptual evaluation of
this work. For each group of outputs from a given method, we
randomly choose 100 images and ask users to rate the image. The
user is presented with one output image (with target style image
thumbnails, if necessary) at a time and is prompted to give a score
from 1 (worst) to 5 (best) to each image, based on image quality
and style. 5 ratings are collected for each image, resulting in 500
ratings for each group of outputs. Please refer to the supplemental
document for more details about our AMT experiments.
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TRAINING STABILIZATION 

➤ we utilized the following strategies： 

➤ Experience Replay: This strategy helps to reduce sample 
correlation and stabilizes training
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CATALOG

➤ Author 

➤ Background 

➤ Purpose & Effect 

➤ Model 

➤ Experiment
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IMPLEMENTATION DETAILS 

➤ On RAW images 

➤ TensorFlow, code not available 

➤ Training: less than 3 hours for all experiements 

➤ Testing: unoptimized version takes 30ms for inference on an 
NVIDIA TITAN X (Maxwell) GPU 

➤ Model size: < 30MB
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DATASET

➤ The MIT-Adobe FiveK Dataset(Paired) 

➤ 5000 RAW images, retouched versions of five experts.
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(a) input (b) Retoucher A (c) Retoucher B

(d) Retoucher C (e) Retoucher D (f) Retoucher E

Figure 1. On this photo, the retouchers have produced diverse of outputs, from a sunset mood (b) to a day light look (f). There is no single
good answer and the retoucher’s interpretation plays a significant role in the final result. We argue that supervised machine learning is well
suited to deal with the difficult task of automatic photo adjustment, and we provide a dataset of reference images that enables this approach.
This figure may be better viewed in the electronic version.

Global learning We use this dataset for supervised learn-
ing. We describe a set of features and labels that enable
the prediction of a user’s adjustment.

Sensor placement Our dataset enables sensor placement to
select a small set of representative photos. Using ad-
justments made to these photos by new users we accu-
rately learn preferences of new users.

Difference learning We show that predicting the difference
between two photographers can generate better results
than predicting the absolute adjustment directly, and
that it can be used for learning users’ preferences on-
the-fly.

2. A Dataset of Input-Output Photographs

We have collected 5,000 photographs taken with SLR
cameras by a set of different photographers. They are all in
RAW format, i.e., all the information recorded by the cam-
era sensor is available. We have made sure that the pho-
tographs cover a broad diversity of scenes, subjects, and
lighting conditions. We then hired five photography stu-
dents in an art school to adjust the tone of the photos. Each
of them retouched all the 5,000 photos using a software ded-
icated to photo adjustment (Adobe Lightroom) on which
they were extensively trained. We asked the retouchers to
achieve visually pleasing renditions, akin to a postcard. The
retouchers were compensated for their work. A visual in-
spection reveals that the retouchers made large modifica-
tions to the input images. Moreover, their adjustments are
nontrivial and often differ significantly among the retouch-
ers. Figure 1 shows an example of this diversity. We nu-

merically evaluate these points with statistics computed in
the CIE-Lab color space. The difference between the input
photo and the retouched versions is 5.5 on average and can
be as much as 23.7. And the average difference between the
retouched version is 3.3 and the maximum is 23.5. For ref-
erence, the difference between white and black in CIE-Lab
is 100. We also augmented the dataset with tags collected
with Amazon Mechanical Turk to annotate the content of
the photos. We also ran a user study in a controlled setting
to rank photographers according to users’ preference on a
subset of our dataset.

We studied the dimensionality of the tone remapping
curves that transform the input image luminance into the
adjusted one. We found that the first three principal com-
ponents explain 99% of the variance of the dataset and that
the first component alone is responsible for 90% of it. This
is why we focus our learning on this component.

3. Learning problem setup

3.1. Labels

We express adjustments as a remapping curve from input
luminance into output luminance, using the CIE-Lab color
space because it is reasonably perceptually uniform. The
curve is represented by a spline with 51 uniformly sampled
control points. We fit the spline to the pairs of input-output
luminance values in a least-squares sense.

We want to avoid bias due to the type of camera used for
a photo and the skill of the particular photographer. In par-
ticular, different camera metering systems or a user’s man-
ual settings might result in different exposures for a given
scene. This is why we normalize the exposure to the same

99



DATASET

➤ 500px.com (Unpaired) 

➤ professionally retouched photos from two artists, 369 from 
one and 397 from the other. 

29

Exposure:A
W
hite-B

ox
Photo

Post-Processing
Fram

ew
ork

•
X:13

500px artist A500px artist B

OursCycleGANOursCycleGAN

Fig.10.
Learning

the
styles

oftw
o
artists

from
500px.com

,using
oursystem

and
C
ycleG

A
N
.

A
CM

Transactionson
G
raphics,Vol.X

,N
o.X

,A
rticle

X
.Publication

date:January
X
X
X
X
.

http://500px.com


ERROR METRICS

➤ distributions of image properties  

➤ histograms of luminance, contrast, saturation (measure the 
distance in the output and target) 

➤ user study 

➤ Amazon Mechanical Turk. Randomly choose 100 images 
and ask users to rate the image.
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SUPPLEMENTAL DOCUMENT
Filter Design Details
Contrast, Saturation, and Black & White Filters. These �lters are

designed similarly, with an input parameter that sets the linear
interpolation between the original image and the fully enhanced
image, i.e.,

pO = (1 � p) · pI + p · Enhanced(pI ).
For Contrast:

EnhancedLum(pI ) =
1
2
(1 � cos(� ⇥ (Lum(pI )))),

Enhanced(pI ) = pI ⇥
EnhancedLum(pI )

Lum(pI )
,

where the luminance function Lum(p) = 0.27pr + 0.67p� + 0.06pb .
For Saturation:

EnhancedS(s,�) = s + (1 � s) ⇥ (0.5 � |0.5 �� |) ⇥ 0.8,

Enhanced(pI ) = HSVtoRGB(H (pI ),EnhancedS(S(pI ),V (pI )).V (pI )),
where H , S , and V are HSV channels of a pixel.

For Black and White:

Enhanced(pI ) = RGB(Lum(pI ), Lum(pI ), Lum(pI )).

Tone and Color Curves. We use a di�erentiable piecewise-linear
mapping function to represent curves, as detailed in the main paper.
For tone curves, the same curve is applied to the image, and the slope
of each segment in the curve is in [0.5, 2.0]. For color, a separate
curve is applied to each of the three color channels, with slopes in
[0.9, 1.1]. The bounds on the curve slopes re�ect the fact that human
artists do not usually apply sharp color curves, but sometimes may
use a strong tone curve.

Experimental Details
MIT-Adobe FiveKDataset Partitions. TheMIT-Adobe FiveK dataset

is randomly separated into three parts, which are listed in the data
�les FiveK_train1.txt, FiveK_train2.txt and FiveK_test.txt. For
the test set, we select 100 random images employed in the user study
on AMT, as listed in �le FiveK_test_AMT.txt.

Histogram Intersection Details. The quantities for histogram in-
tersection are de�ned as follows:

• Luminance is de�ned as the mean pixel luminance (de�ned
previously as Lum.)

• Contrast is de�ned to be twice the variance of pixel lumi-
nance.

• Saturation is de�ned as the mean pixel saturation (the “S”
value in the HSL color space).

The results are separated into 32 equal bins within the interval
[0, 1], i.e. [0, 1/32), [1/32, 2/32), . . .
However, with only 1, 000 sample images, only about 31.25 im-

ages will be placed in each bin on average, resulting in signi�cant
measurement noise. Therefore, we augment the data for histogram
intersection by cropping 16 patches in each image, and measure the
histogram quantities on these 16, 000 image patches. Please refer
to the accompanying code (histogram_intersection.py) for the
detailed algorithm on measuring this error metric.

Fig. 19. Our AMT UIs for user studies.

Amazon Mechanic Turk. The AMT interfaces for evaluation are
shown in Figure 19.

Human performance measurement. We present the users a short
video (with subtitles) demonstrating how our software should be
used. The user studies take about 3 minutes per image (roughly 30
minutes for each user to retouch 10 images). We do not enforce any
time limit on the task. All 10 users are highly educated and their
ages range from 20 to 30.

Scalability in Resolution. The ability to process high-resolution
images is critical in professional photography. In Figure 20, 21 and 22,
we show high-resolution results from our method, Pix2pix, and
CycleGAN. It is clear that our method produces images with the
highest quality on high-resolution images.
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COMPARE

➤ CycleGAN:  training on unpaired data, having limitation on 
resolution. Training takes 30 hours for 500 × 333 px. 

➤ Pix2pix: training on paired data, having limitation on 
resolution. 
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Human (expert) CycleGAN Pix2pix Human (novice) Our method

Fig. 8. Results of human expert, CycleGAN, Pix2pix, normal human, and our method on expert C from the MIT-Adobe FiveK Dataset.

Interestingly, with the help of our system, we can even write
explicit code for a black-box �lter based on the estimated operation
sequence, as illustrated in Figure 13 and 14.We believe this capability
can greatly help advanced users to gain insight into the artistic styles
of particular photographers.

The variation of learned operation sequences from certain target
dataset reveals how consistent the images styles are. We �nd that for
the “Nashville” �lter, the operation sequences are basically the same,

while for human artists the sequences vary more. This observation
matches the previous discussions regarding the error metric and
the multi-modal nature of human retouching.

6.3 Comparison with human users
Unlike image classi�cation, retouching is a challenging task for
most ordinary people. While they can judge how good-looking
an image is, it is often challenging for them to generate a nicely
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Input

CycleGAN Pix2pix Ours

Zoom-in views

Fig. 9. Comparison to CycleGAN and Pix2pix results. While they can pro-
duce good tone and color compared to the input, our method additionally
has no distortion and no limit on image resolution.

retouched photo. Though experts prefermanually retouching photos
for maximum control, one of the main goals of our system is to help
ordinary users to obtain better photos automatically. Therefore, we
examine how normal users perform at this task, and how our system
compares to them.
We developed a graphical user interface (Figure 15) to measure

human performance on this task. We provide exactly the same set
of operations to the user as to the network, except for curve-based
edits we provide 3 control points instead of 8 to make the interface
more user-friendly. To introduce our software to the user, we show
them a short tutorial video before they start. 100 images from 10
users are collected, and their performance is given in Table 2. It can
be seen from the user study that our method can generate results
that are preferable to those produced by these users.

7 CONCLUDING REMARKS
Inspired by the retouching process of expert photographers, we pro-
posed a general framework for automatic photo post-processing that
utilizes reinforcement learning to reveal an understandable solution
composed of common image manipulations, generative adversarial
networks that allow training from unpaired image data, and di�eren-
tiable, resolution-independent �lters to make network optimization
possible over a variety of editing operators and for arbitrary image
sizes. The e�ectiveness of this method was demonstrated through
quantitative and qualitative comparisons. This framework is general
enough to incorporate a broader set of operations, which we hope
can make it even more versatile.

Certain low-level image �lters, such as for pixel-level denoising,
may be challenging to model as resolution-independent, di�eren-
tiable �lters, and thus may not �t into our framework. Without de-
noising, the image noise in shadows may become more pronounced
after operations that boost brightness, as seen in Figure 12. Denois-
ing ideally should be applied to the input image prior to using our
framework. Other failure cases are presented in Figure 16.
For learning to retouch photos, we have only 2 ⇥ 103 training

images compared with the 1.4 ⇥ 107 images in ImageNet for image
classi�cation. It would be meaningful in future work to 1) build
larger datasets of RAW photos, and 2) transfer or reuse the knowl-
edge distilled from ImageNet to the retouching problem.

In addition, it is possible to replace the actor-critic RL architecture
and the Wasserstein GAN structure with other related alternatives.
We �nd that much human labor and expertise is required to properly
set the hyper-parameters to stabilize the training process.We believe
that using more stable RL and GAN components will make this
process easier and lead to even better results.

Figure. 17 and 18 exhibit some �nal examples of retouched photos
by our system.We hope that not onlymachines but also all interested
people can understand the secrets of digital photography better, with
the help of our “Exposure” system.
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Fig. 9. Comparison to CycleGAN and Pix2pix results. While they can pro-
duce good tone and color compared to the input, our method additionally
has no distortion and no limit on image resolution.

retouched photo. Though experts prefermanually retouching photos
for maximum control, one of the main goals of our system is to help
ordinary users to obtain better photos automatically. Therefore, we
examine how normal users perform at this task, and how our system
compares to them.
We developed a graphical user interface (Figure 15) to measure

human performance on this task. We provide exactly the same set
of operations to the user as to the network, except for curve-based
edits we provide 3 control points instead of 8 to make the interface
more user-friendly. To introduce our software to the user, we show
them a short tutorial video before they start. 100 images from 10
users are collected, and their performance is given in Table 2. It can
be seen from the user study that our method can generate results
that are preferable to those produced by these users.

7 CONCLUDING REMARKS
Inspired by the retouching process of expert photographers, we pro-
posed a general framework for automatic photo post-processing that
utilizes reinforcement learning to reveal an understandable solution
composed of common image manipulations, generative adversarial
networks that allow training from unpaired image data, and di�eren-
tiable, resolution-independent �lters to make network optimization
possible over a variety of editing operators and for arbitrary image
sizes. The e�ectiveness of this method was demonstrated through
quantitative and qualitative comparisons. This framework is general
enough to incorporate a broader set of operations, which we hope
can make it even more versatile.

Certain low-level image �lters, such as for pixel-level denoising,
may be challenging to model as resolution-independent, di�eren-
tiable �lters, and thus may not �t into our framework. Without de-
noising, the image noise in shadows may become more pronounced
after operations that boost brightness, as seen in Figure 12. Denois-
ing ideally should be applied to the input image prior to using our
framework. Other failure cases are presented in Figure 16.
For learning to retouch photos, we have only 2 ⇥ 103 training

images compared with the 1.4 ⇥ 107 images in ImageNet for image
classi�cation. It would be meaningful in future work to 1) build
larger datasets of RAW photos, and 2) transfer or reuse the knowl-
edge distilled from ImageNet to the retouching problem.

In addition, it is possible to replace the actor-critic RL architecture
and the Wasserstein GAN structure with other related alternatives.
We �nd that much human labor and expertise is required to properly
set the hyper-parameters to stabilize the training process.We believe
that using more stable RL and GAN components will make this
process easier and lead to even better results.

Figure. 17 and 18 exhibit some �nal examples of retouched photos
by our system.We hope that not onlymachines but also all interested
people can understand the secrets of digital photography better, with
the help of our “Exposure” system.
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Fig. 9. Comparison to CycleGAN and Pix2pix results. While they can pro-
duce good tone and color compared to the input, our method additionally
has no distortion and no limit on image resolution.

retouched photo. Though experts prefermanually retouching photos
for maximum control, one of the main goals of our system is to help
ordinary users to obtain better photos automatically. Therefore, we
examine how normal users perform at this task, and how our system
compares to them.
We developed a graphical user interface (Figure 15) to measure

human performance on this task. We provide exactly the same set
of operations to the user as to the network, except for curve-based
edits we provide 3 control points instead of 8 to make the interface
more user-friendly. To introduce our software to the user, we show
them a short tutorial video before they start. 100 images from 10
users are collected, and their performance is given in Table 2. It can
be seen from the user study that our method can generate results
that are preferable to those produced by these users.

7 CONCLUDING REMARKS
Inspired by the retouching process of expert photographers, we pro-
posed a general framework for automatic photo post-processing that
utilizes reinforcement learning to reveal an understandable solution
composed of common image manipulations, generative adversarial
networks that allow training from unpaired image data, and di�eren-
tiable, resolution-independent �lters to make network optimization
possible over a variety of editing operators and for arbitrary image
sizes. The e�ectiveness of this method was demonstrated through
quantitative and qualitative comparisons. This framework is general
enough to incorporate a broader set of operations, which we hope
can make it even more versatile.

Certain low-level image �lters, such as for pixel-level denoising,
may be challenging to model as resolution-independent, di�eren-
tiable �lters, and thus may not �t into our framework. Without de-
noising, the image noise in shadows may become more pronounced
after operations that boost brightness, as seen in Figure 12. Denois-
ing ideally should be applied to the input image prior to using our
framework. Other failure cases are presented in Figure 16.
For learning to retouch photos, we have only 2 ⇥ 103 training

images compared with the 1.4 ⇥ 107 images in ImageNet for image
classi�cation. It would be meaningful in future work to 1) build
larger datasets of RAW photos, and 2) transfer or reuse the knowl-
edge distilled from ImageNet to the retouching problem.

In addition, it is possible to replace the actor-critic RL architecture
and the Wasserstein GAN structure with other related alternatives.
We �nd that much human labor and expertise is required to properly
set the hyper-parameters to stabilize the training process.We believe
that using more stable RL and GAN components will make this
process easier and lead to even better results.

Figure. 17 and 18 exhibit some �nal examples of retouched photos
by our system.We hope that not onlymachines but also all interested
people can understand the secrets of digital photography better, with
the help of our “Exposure” system.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.



COMPARE

34

X:10 • Hu, Y. et al

6.1 End-to-end Post-Processing and Style Learning
Most previous methods for automatic photo post-processing are
based on supervised learningwhich requires paired data [Bychkovsky
et al. 2011; Dale et al. 2009; Gharbi et al. 2017; Hwang et al. 2012;
Yan et al. 2016]. It is only recently that a series of works [Kim et al.
2017; Liu and Tuzel 2016; Zhu et al. 2017] based on GANs have
made possible the utilization of unpaired data. We compare our
results with those of CycleGAN, another deep learning approach for
image generation using only unpaired data. Note that in contrast to
CycleGAN, our method has no limitation on resolution, since the
�lters are resolution-independent and �lter operations estimated
from low-res images can be identically applied to high-res inputs.

We conducted three sets of experiments using RAW images from
part 1 of the MIT-Adobe FiveK dataset as input. For the target
datasets we use images from expert C in the MIT-Adobe FiveK and
the two artists from 500px.com, respectively. Though Pix2pix [Isola
et al. 2016] needs paired data towork, we still include its performance
on a test using paired data from part 1 of the MIT-Adobe FiveK
dataset.
For the �rst experiment with images from expert C as target

images, visual results are shown in Figure 8 and Figure 9, and quan-
titative results are listed in Table 2. It can be seen that Pix2pix and
CycleGAN generate vivid color but lead to edge distortions and
degraded image quality, making them unsuitable for high-quality
post-processing tasks. Using the publicly available implementation
of CycleGAN from the authors [Zhu et al. 2017], training takes 30
hours for generating images of resolution 500 ⇥ 333px2.

For the style learning experiments with the 500px artists, quanti-
tative results are shown in Table 3 and Table 4, and visual results
are displayed in Figure 10. No comparison results can be generated
for Pix2pix, since no paired training data is generally available for
images downloaded from the web.

Discussion. It can be seen that our method outperforms strong
baselines in the user study, with higher user ratings than Pix2pix
(which relies on much stronger supervision from paired training
data), likely due to the fact that our images have no blurry artifacts.
CycleGAN, the unpaired version of Pix2pix, does not perform as
well, likely due to much weaker supervision from only unpaired
data. It is worth noting that during the user study, the image res-
olution we used was around 500 ⇥ 333px, so that the resolution

2We used �neSize=128 in the authors’ implementation (https://github.com/junyanz/
CycleGAN).

Table 2. �antitative results on general post-processing (using expert C in
MIT-Adobe FiveK as training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 71.3% 83.7% 69.7% 3.43 ± 0.04
CycleGAN 61.4% 71.1% 82.6% 2.47 ± 0.04
Pix2pix 92.4% 83.3% 86.5% 3.37 ± 0.04
Human - - - 3.30 ± 0.04
Expert C 100% 100% 100% 3.66 ± 0.03

Table 3. �antitative results on style learning (using artist A in 500px as
training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 82.4% 80.0% 71.5% 3.39 ± 0.04
CycleGAN 63.6% 45.2% 71.8% 2.69 ± 0.04
500px artist A 100% 100% 100% 3.72 ± 0.04

Table 4. �antitative results on style learning (using artist B in 500px as
training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 85.2% 91.7% 83.5% 3.22 ± 0.04
CycleGAN 60.1% 79.4% 83.4% 2.86 ± 0.04
500px artist B 100% 100% 100% 3.40 ± 0.04

problem of CycleGAN and Pix2pix may not be very pronounced.
However, at higher output resolutions, it becomes clear that our
method generates images of much higher quality, as shown in Fig-
ure 9. The deconvolution structure of CycleGAN and Pix2pix enable
them to generate structural transformations of images, e.g. painting
stripes on horses to generate zebras. However, on our task, such a
capability can bring distortion artifacts. The Contrast histogram
intersection score for CycleGAN on the artist A experiment (Table 3)
is lower than the other metrics. We hypothesize the reason to be
that its small receptive �eld (1/3 of the whole image width) does
not adequately capture low-frequency image variations, which is a
feature of this artist. A larger receptive �eld or downsampled image
could be used for CycleGAN, but this would require more training
data and would produce even lower-resolution outputs.
In conclusion, the results of our system on the retouching prob-

lem are very promising. We note though that Pix2pix and Cycle-
GAN can produce extraordinary results on image translation with
structural transformations, while our system is tailored for photo
post-processing and is not capable of such structural transforma-
tions.

6.2 Reverse Engineering Black-box Filters
Our work is not the �rst attempt to mimic the e�ects of black-box
�lters. Previous methods [Gharbi et al. 2017; Yan et al. 2016] have
shown excellent results in doing so for Instagram/Photoshop �lters.
However, these learned �lters do not reveal how the original �lter
works, i.e. we are only getting another black-box out of an existing
one.

Our method not only generates visually pleasing results, but also
reveals how this process is done step by step, as shown in Figure 1
and 3 (on expert C from the MIT-Adobe FiveK dataset), Figure 11
(on artist A from 500px), Figure 12 (on artist B from 500px) and
Figure 13 (on the black-box �lter “Nashville" from Instagram). This
is the �rst time such understandable result can be obtained to the
best of our knowledge.
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require more training data and would produce 
even lower-resolution outputs 



APPLICATION

➤ Change fixed filters into code:
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Fig. 13. Example of a learned operation sequence on the “Nashville” filter
from Instagram.

Code based on the learned trajectory

Images generated by the code

Images generated by the black-box �lter

Fig. 14. With the operation sequence estimated by our system, we can write
code that mimics certain black-box filters.

Fig. 15. The graphical user interface for collecting retouching data from
ordinary users. An intensity histogram of the current image and curves of
color/tone curve operations are displayed.

Fig. 16. Example failure cases. Our method sometimes does not produce
good tones for faces, as no special consideration is taken in our general
framework of this particularly important aspect of photos. Also, our system
may have limited ability to improve input photos that contain poor content,
composition or lighting conditions.
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FAILURE CASES

➤ Cannot denoise: pixel-level denoising, may be challenging to 
model as resolution-independent, differentiable filters 

➤ faces, images with poor content, composition or lighting 
conditions
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SUMMARY

➤ End-to-end model, differentiable filters 

➤ Undertandable 

➤ Without image pairs 

➤ Transform into style of images collections 

➤ GAN scales with image resolution and generates no distortion 
artifacts in the image. 

➤ May replace the actor-critic RL architecture and WGAN with 
other related alternatives.
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