Exposure: A White-Box Photo Post-Processing Framework

ACM Transaction on Graphics (4.088) Accepted

Yuanming Hu, Massachuse s Institute of Technology Hao He, Massachuse s Institute of Technology Chenxi Xu, Peking University Baoyuan Wang, Microsoft Research Stephen Lin, Microsoft Research

> Wenjing Wang 18.01.28

CATALOG

► Author

- ► Background
- ► Purpose & Effect
- ► Model
- ► Experiment

BACKGROUND

- Automatic Photo Retouching
- ► The state-of-the-art methods:
 - mainly based on supervised learning from paired images (by an expert photographer)
 - handcrafted features

BACKGROUND

► CNNs:

Automatic Photo Adjustment Using Deep Neural Networks: DNN and handcrafted global and local features

Deep Bilateral Learning for Real-Time Image Enhancement: predict local affine transforms in bilateral space, edge-aware

12 megapixel 16-bit linear input (tone-mapped for visualization)

tone-mapped with HDR+ pr 400 - 600 ms

processed with our algorithm 61 ms, PSNR = 28.4 dB

BACKGROUND

- Automatic Content-Aware Color and Tone Stylization [Lee et al. 2016]
 - Color and Tone Stylization, unsupervised
 - finding exemplar images whose color and tone style is compatible with a given image

Figure 2. The overall framework of our system.

CATALOG

- ► Author
- ► Background
- ► Purpose & Effect
- ► Model
- ► Experiment

► Contributions:

- Understandable: network's chooses can be understood and reproduced by users, rather a black-box.
- Without pairs: without paired image data.
- Transform into style of a photo collection: Instead of converting into a specific result, learns to transform an image into a certain style as represented by a photo collection.

 RL: Post-processing as a decision-making sequence

Gamma 1/1.62 Ľ Expo. Tone Cst. Gam. W.B. BW Satu. Color Exposure +1.58 Expo. Tone Cst. Gam. W.B. BW Color Satu. Contrast +0.57 Expo. Gam. Cst. W.B. BW Satu Color Tone Expo. Gam. Cst. W.B. BW

Expo.

W.B.

Satu.

Satu.

Color

Color

Gam. 🗖 Cst.

Tone

BW

Color

Fig. 12. Example of a learned retouching operation sequence from artist B (500px). Note that different from artist A, photos from artist B are more saturated, which is reflected in this learned operation sequence.

- ► Make decisions on:
 - ► Filter?

Gamma\Exposure\Contrast...

► parameter?

Fig. 11. Example of a learned retouching operation sequence from artist A (500px).

► GAN(WGAN):

Iscriminator tells if the image is from the <u>target dataset</u> or was generated by the generator

paired:

为了和pix2pix等比较 但是训练的时候仍然是无pair

input Expert A Expert B Expert C Expert D Expert E Subject: <u>DNG</u> <u>TIFF16</u> <u>TIFF16</u> <u>TIFF16</u> <u>TIFF16</u> <u>TIFF16</u> nature

not paired:

Fig. 10. Learning the styles of two artists from 500px.com, using our system and CycleGAN.

CATALOG

- ► Author
- ► Background
- ► Purpose & Effect
- ► Model
- ► Experiment

RL PART — MODEL

- Problem: P = (S,A). S is state space (RAW input and all intermediate results), A is action space (filter operations, e.g. exposure, white balance, contrast)
- ► Reward function **r**

> return
$$\mathbf{r}_k$$
:
 $r_k^{\gamma} = \sum_{k'=0}^{N-k} \gamma^{k'} r(s_{k+k'}, a_{k+k'}),$

where γ : discount factor, places greater importance on rewards in the nearer future.

> Policy π

RL PART — MODEL

► Hope to maximize objective $J(\pi)$ (s₀ is input):

$$J(\pi) = \mathop{\mathbb{E}}_{\substack{s_0 \sim S_0 \\ t \sim \pi}} \left[r_0^{\gamma} | \pi \right],$$

decompose actions into two parts:

- ► a₁: select filters
- ► a₂ : a continuous decision on filter parameters
- decompose policy into two parts:
 - \succ π_1 : takes (s) and decide a_1
 - \succ π_2 : takes (s,a₁) and decide a_2

RL PART ——PRINCIPLES

- ► Filter should be:
- Differentiable: for back propogation.
- Resolutionindependent: so that we can train on 64×64 px and run the model on 6000×4000 px.
- Understandable: which means filters should have intuitive meaning.

► input $P_I = (r_I, g_I, b_I) \rightarrow \text{output } P_O = (r_O, g_O, b_O)$

Operation	Parameters	Filter
Exposure	E	$P_O = 2^E P_I$
White Balance	W _r ,W _g ,W _b	$P_{O} = (W_{r} r_{I}, W_{g} g_{I}, W_{b} b_{I})$
Color curves	C _{i,k}	$P_{O} = (L_{Cr}(r_{I}), L_{Cg}(g_{I}), L_{Cb}(g_{I}))$

requires special treatment for its filter to be differentiable

f(x)➤ Curve (曲线): $1(T_4)$ t_3 T: t_2 T_2 t_1 T_1 t_0 ► X $\frac{1}{2}$ 3 $\frac{1}{4}$ 0 1

➤ using L parematers: { $t_0, t_1, ..., t_{L-1}$ }, $T_k = \sum t_i$, points on the curves are represented as (k/L, T_k/T_L) ^{k-1}

$$f(x) = \frac{1}{T_L} \sum_{i=0}^{L-1} \operatorname{clip}(L \cdot x - i, 0, 1) t_k.$$

▶ find that L = 8 is sufficient.

$$p_O = (1 - p) \cdot p_I + p \cdot \text{Enhanced}(p_I).$$

For **Contrast**:

EnhancedLum(
$$p_I$$
) = $\frac{1}{2}(1 - \cos(\pi \times (\text{Lum}(p_I))))$,

$$\text{Enhanced}(p_I) = p_I \times \frac{\text{EnhancedLum}(p_I)}{\text{Lum}(p_I)},$$

where the luminance function $\text{Lum}(p) = 0.27p_r + 0.67p_g + 0.06p_b$. For **Saturation**:

EnhancedS(s, v) =
$$s + (1 - s) \times (0.5 - |0.5 - v|) \times 0.8$$
,

Enhanced(p_I) = HSVtoRGB($H(p_I)$, EnhancedS($S(p_I)$, $V(p_I)$)). $V(p_I)$), where H, S, and V are HSV channels of a pixel. For **Black and White**:

 $Enhanced(p_I) = RGB(Lum(p_I), Lum(p_I), Lum(p_I)).$

Fig. 5. Visualizations of the eight differentiable filters. Gradients are displayed with a +0.5 offset so that negative values can be properly viewed. For the white balance filter, we visualize the gradient with respect to the red channel parameter; for the tone/color curves, we differentiate with respect to the first parameter of the curve/red curve.

RL PART — LEARNING

- ► Two policy networks
 - > map the images into action probabilities π_1 (after softmax)
 - > map the images into filter parameters π_2 (after tanh)
- > value (RL, actor-critic algorithm)
- ► discriminator (GAN)
- ► share basically the same architectre:

Stochastic policy: $n_c = \#$ filters softmax activation

Deterministic policy: $n_c = \#$ filter parameters tanh activation

Value: $n_c = 1$ no activation

Discriminator: $n_c = 1$ no activation

RL PART —— LEARNING

Network Architecture (for policy/value/critic networks)

- ► Convolution: 4×4 and stride 2
- ► the first FC: reduce the number of outputs to 128
- ► the final FC: get parameters we need
- Naively using CNNs results in unsatisfactory learning of agent policies and global statistics. Therefore, we concatenate extra (spatially constant) feature planes as additional color channels in the input.

Stochastic policy:

softmax activation

 $n_c = \#$ filters

RL PART —— LEARNING

> For π1:

- ► **Softmax** → which filter to use
- extra feature planes(64×64×3): average luminance, contrast and saturation
- For $\pi 2$ (one for each filter share the convolutional layers):
 - ► Tanh \rightarrow filter parameters
 - extra feature planes(64×64×9): 8 boolean (which filters have been used) & the number of steps that have been taken
- ► For Value Net (actor-critic RL architecture):
 - Extra feature planes(64×64×9): 8 boolean (which filters have been used) & the number of steps that have been taken

RL PART —— LEARNING

- Policy network training:
 - ► $J(\pi_1)$: Monte-Carlo policy gradient
 - ► $J(\pi_2)$: Deterministic policy gradient
 - using actor-critic algorithm to calculate
- Set the discount factor as = 1
- ► allow the agent to make 5 edits to the input image

GAN PART — LEARNING

.

.

► WGAN + gradient penalty

. .

TRAINING STABILIZATION

► we utilized the following strategies:

- Exploitation vs.exploration: choices between (i) devoting more attention on improving the current policy (ii) trying a new action in search of potentially greater future reward
 - > Penalize π_1 if its proposal distribution is too concentrated

$$R' = R - 0.05 \left(\log |\mathcal{F}| + \sum_{F \in \mathcal{F}} \pi_1(F) \log \pi_1(F) \right).$$

If the agent uses a filter twice, the second usage will incur an additional penalty of -1.

TRAINING STABILIZATION

► we utilized the following strategies:

Experience Replay: This strategy helps to reduce sample correlation and stabilizes training

CATALOG

- ► Author
- ► Background
- ► Purpose & Effect
- ► Model
- ► Experiment

.

IMPLEMENTATION DETAILS

- ► On RAW images
- ► TensorFlow, code not available
- ➤ Training: less than 3 hours for all experiements
- Testing: unoptimized version takes 30ms for inference on an NVIDIA TITAN X (Maxwell) GPU
- ► Model size: < 30MB

DATASET

► The MIT-Adobe FiveK Dataset(Paired)

► 5000 RAW images, retouched versions of five experts.

DATASET

- ► <u>500px.com</u> (Unpaired)
 - professionally retouched photos from two artists, 369 from one and 397 from the other.

500px artist B

500px artist A

ERROR METRICS

distributions of image properties

 histograms of luminance, contrast, saturation (measure the distance in the output and target)

► user study

Amazon Mechanical Turk. Randomly choose 100 images and ask users to rate the image.

Your score: 1 - Bad 2 - Not so good 3 - Normal 4 - Good 5 - Excellent

- CycleGAN: training on unpaired data, having limitation on resolution. Training takes 30 hours for 500 × 333 px.
- Pix2pix: training on paired data, having limitation on resolution.

Human (expert)

CycleGAN

Input

CycleGAN

Pix2pix

Ours

COMPARE

REASON:

receptive field (1/3 of the whole image width) is too small to capture lowfrequency image variations (which is a feature of this artist).

A larger receptive field or downsampled image could be used for CycleGAN, but this would require more training data and would produce even lower-resolution outputs

Approach	Histog	User Rating		
	Luminance	Contrast	Saturation	
Ours	71.3%	83.7%	69.7%	3.43 ± 0.04
CycleGAN	61.4%	71.1%	82.6%	2.47 ± 0.04
Pix2pix	92.4%	83.3%	86.5%	3.37 ± 0.04
Human	_	-	-	3.30 ± 0.04
Expert C	100%	100%	100%	3.66 ± 0.03

Approach	Histog	User Rating		
	Luminance	Contrast	Saturation	
Ours	82.4%	80.0%	71.5%	3.39 ± 0.04
CycleGAN	63.6%	45.2%	71.8%	2.69 ± 0.04
500px artist A	100%	100%	100%	3.72 ± 0.04

Approach	Histog	User Rating		
	Luminance	Contrast	Saturation	
Ours	85.2%	91.7%	83.5%	3.22 ± 0.04
CycleGAN	60.1%	79.4%	83.4%	2.86 ± 0.04
500px artist B	100%	100%	100%	3.40 ± 0.04

APPLICATION

► Change fixed filters into code:

```
# Step 1: Gamma
image = image ** (1 / 3.0)
# Step 2: Exposure
image = image / image.mean() * 0.6
# Step 3: Boost blue shadow
blue_shadow = image[:, :, 2] < 0.5
blue = image[:, :, 2]
blue = blue_shadow * (blue * 2) ** 0.7 / 2 + blue * (1 - blue_shadow)
image[:, :, 2] = blue
# Step 4: White balance
image = image * np.array((1.055, 0.984, 0.886)).reshape((1, 1, 3))
# Step 5: Boost shadow
shadow = image < 0.33
image = ((image * shadow * 3) ** 0.8 / 3) + image * (1 - shadow)
```

Code based on the learned trajectory

Images generated by the code

Images generated by the black-box filter

Fig. 14. With the operation sequence estimated by our system, we can write code that mimics certain black-box filters.

- Cannot denoise: pixel-level denoising, may be challenging to model as resolution-independent, differentiable filters
- faces, images with poor content, composition or lighting conditions

SUMMARY

- End-to-end model, differentiable filters
- ► Undertandable
- ► Without image pairs
- Transform into style of images collections
- GAN scales with image resolution and generates no distortion artifacts in the image.
- May replace the actor-critic RL architecture and WGAN with other related alternatives.