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BACKGROUND

» Automatic Photo Retouching
» The state-of-the-art methods:

» mainly based on supervised learning from paired
images (by an expert photographer)

» handcrafted features



BACKGROUND
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» Automatic Photo Adjustment Using Deep Neural Networks:
DNN and handcrafted global and local features

Input Image Ground Truth Our Result

» Deep Bilateral Learning for Real-Time Image Enhancement:
predict local affine transforms in bilateral space, edge-aware

12 megapixel 16-bit linear input tone-mapped with HDR+ processed with our algorithm
(tone-mapped for visualization) 400 - 600 ms 61 ms, PSNR = 28.4 dB



BACKGROUND

» Automatic Content-Aware Color and Tone Stylization [Lee et
al. 2016]

» Color and Tone Stylization, unsupervised

» finding exemplar images whose color and tone style is
compatible with a given image
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Figure 2. The overall framework of our system.
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PURPOSE & EFFECT

» Contributions:

» Understandable: network’s chooses

can be understood and reproduced by RL
(making decision)
users, rather a black-box.
» Without pairs: without paired image A
data.

» Transform into style of a photo
collection: Instead of converting into e GAN
a specific result, learns to transform
an image into a certain style as
represented by a photo collection. Py




PURPOSE & EFFECT
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» Make decisions on:

> Filter?
Gamma\Exposure\Contrast...

» parameter?

Fig. 11. Example of a learned retouching operation sequence from artist A Fig. 12. Example of a learned retouching operation sequence from artist
(500px). B (500px). Note that different from artist A, photos from artist B are more
saturated, which is reflected in this learned operation sequence. 8



PURPOSE & EFFECT

> GAN(WGAN):

» discriminator tells if the image is from the target dataset or
was generated by the generator
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PURPOSE & EFFECT

1Pl R
SR L
i fﬁ-ﬁﬂﬁ

SOOpX artist A

__&.hllm&

500px artist B

CycleGAN

Fig. 10. Learning the styles of two artists from 500px.com, using our system and CycleGAN.
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RL PART MODEL

» Problem: P = (S,A). S is state space (RAW input and all
intermediate results) , A is action space (filter operations,
e.g. exposure, white balance, contrast)

» Reward function r
» return rg: N-k )
}/ _ /
Fe = Z y© r(Sk+k> Ak+k)s

k’=0

where y: discount factor, places greater importance on
rewards in the nearer future.

» Policy it
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RL PART MODEL

» Hope to maximize objective J(mt) (so is input):

Jmy= E_|[rylr].
S()NS()
L~7JT

» decompose actions into two parts:

> aj: select filters

> a,:a continuous decision on filter parameters
» decompose policy into two parts:

» 11 : takes (s) and decide a;

» 11, : takes (s,a;) and decide a;
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RL PART PRINCIPLES

» Filter should be:

» Differentiable: for back NNt:vlk
propogation. )
» Resolution-
independent: so that E,fl; gB .
we can train on 64 X 64 e, ot =K ——
px and run the model on Contrast +0.5
6000x4000 px. 2|2

» Understandable: which
means filters should have

intUitiVG meaning 0 Hire utput Low-res Output
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RL PART FILTER DESIGN

Operation Parameters Filter

Exposure E Po = 2E Py
White Balance W, Wy, Wy, Po = (W11, Wegr, Wy, by)
Color curves Ci,k Po = (LCr(l’I), Lc:g(gl) , Lcb (81))

requires special treatment for its filter to be differentiable
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RL PART FILTER DESIGN

» Curve (HHZR) f(x)
1(Ty)
T3
T,
R 7
4 2 4

» using L parematers: {to,t1,...,ti-1}, Tk = > ti, points on the
curves are represented as (k/L, Tx/Ty) *

1 L-1
Fx) = — Z clip(L - x — 1,0, 1)ty

I

» find that L = 8 is sufficeint.
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RL PART FILITER DESIGN

po = (1 —p) - pr +p-Enhanced(py).

For Contrast:

EnhancedLum(py) = %(1 — cos(r X (Lum(py)))),

EnhancedLum(pry)

Lum(pr)
where the luminance function Lum(p) = 0.27p, + 0.67pg + 0.06py, .
For Saturation:

EnhancedS(s,v) = s+ (1 —s) X (0.5—-10.5—9]) X 0.8,

Enhanced(p;) = HSVtoRGB(H(py), EnhancedS(S(pr), V(pr)).V(pr)),

where H, S, and V are HSV channels of a pixel.
For Black and White:

Enhanced(p;) = RGB(Lum(py), Lum(py), Lum(py)).

Enhanced(py) = pr X

%
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RL PART FILTER DESIGN

Input

Exposure Color Curve Black & White White Blanace  Saturaion
Gamma 2 Tone Curve Contrast +0.8
+0.5 (Boost Red) +0.5 (Blue) +0.5

Fig. 5. Visualizations of the eight differentiable filters. Gradients are displayed with a +0.5 offset so that negative values can be properly viewed. For the
white balance filter, we visualize the gradient with respect to the red channel parameter; for the tone/color curves, we differentiate with respect to the first
parameter of the curve/red curve.

Gradient
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RL PART LEARNING

» Two policy networks
» map the images into action probabilities 1; (after softmax)
» map the images into filter parameters 1, (after tanh)

» value (RL, actor-critic algorithm )

» discriminator (GAN)

» share basically the same architectre:

Network Architecture [ Stochastic policy:
(for policy/value/critic networks) softmax activation
put Deterministic policy

Conv layers: Fully
4x4 stride 2 convolution Connected -
tanh activation

.ﬂl val
n 1
n. |  noactivation
33333333 c
28
nd x(3 + Discrimina tor:
64X64X xtra planes) ( ) & ne=1
#extra planes no a
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RL PART LEARNING
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. hasti licy:
Network Architecture [ Stochastic policy
° ° . C —
(for policy/value/critic networks) softmax activation
input Deterministic policy:
: . policy:
low-res image Cony layers: Hully n, = #filter parameters
4x4 stride 2 convolution Connected L
= tanh activation

= —> 4@ < Value:
16x16x64 8x8x128 4X4X256 n.=1

no activation
32x32x32 - ne
64X64X%X3 128
and 64x64%(3 + Discriminator:
64X64X #extra planes) LeakyReLU activation after each layer (leak=0.2) K ne=1
#extra planes no activation

» Convolution: 4 X4 and stride 2

> the first FC: reduce the number of outputs to 128

> the final FC: get parameters we need

» Naively using CNNs results in unsatisfactory learning of agent policies and global statistics. Therefore, we concatenate
extra (spatially constant) feature planes as additional color channels in the input.
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RL PART LEARNING

» Softmax — which filter to use

> extra feature planes(64Xx64X3): average luminance, contrast and
saturation

» For n2 (one for each filter share the convolutional layers):
» Tanh — filter parameters

> extra feature planes(64x64x9): 8 boolean (which filters have
been used) & the number of steps that have been taken

» For Value Net (actor-critic RL architecture):

> extra feature planes(64x64x9): 8 boolean (which filters have
been used) & the number of steps that have been taken

21



RL PART LEARNING

» Policy network training:

» J(rm1) : Monte-Carlo policy gradient

» J(mz) : Deterministic policy gradient

» using actor-critic algorithm to calculate
> Set the discount factor as = 1

» allow the agent to make 5 edits to the input image
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GAN PART LEARNING

» WGAN + gradient penalty
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TRAINING STABILIZATION

» we utilized the following strategies:

» Exploitation vs.exploration: choices between (i) devoting
more attention on improving the current policy (ii) trying a
new action in search of potentially greater future reward

» Penalize m; if its proposal distribution is too concentrated

/ \

R’ =R -0.05|log |F]| + Z 1 (F) log 71(F) | .
\ Fe¥F /

> if the agent uses a filter twice, the second usage will incur
an additional penalty of -1.
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TRAINING STABILIZATION

» we utilized the following strategies:

» Experience Replay: This strategy helps to reduce sample
correlation and stabilizes training
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IMPLEMENTATION DETAILS

» On RAW images
» TensorFlow, code not available
» Training: less than 3 hours for all experiements

» Testing: unoptimized version takes 30ms for inference on an
NVIDIA TITAN X (Maxwell) GPU

» Model size: < 30MB
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DATASET
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» The MIT-Adobe FiveK Dataset(Paired)

» 5000 RAW images, retouched versions of five experts.

(a) input

(d) Retoucher C : (e) Retoucher D (f) Retoucher E
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DATASET

» 500px.com (Unpaired)

29
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, 369 from

SOOpX artist A

500px artist B

» professionally retouched photos from two artists
one and 397 from the other.


http://500px.com

ERROR METRICGS

» distributions of image properties

> histograms of luminance, contrast, saturation (measure the
distance in the output and target)

> user study

» Amazon Mechanical Turk. Randomly choose 100 images
and ask users to rate the image.

Reference Photos Photo to Evaluate 1-Bad
- — i R 2 - Not so good
| . 3-N |
oo P, T Se— oy
=3 . : @ e 4 - Good
b Mpdipa®™ ] . SR e
o " . -~ |

[l e
— W

P P
L T o
v o e Bl s
i e e s B

30



COMPARE

» CycleGAN: training on unpaired data, having limitation on
resolution. Training takes 30 hours for 500 X 333 px.

» Pix2pix: training on paired data, having limitation on
resolution.
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Our rhetod

Human (novice)

CycleGAN

(expert ]

Human
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CycleGAN Pix2pix

CycleGAN Pix2pix
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COMPARE

Approach Histogram Intersection User Rating
R E A S O N' Luminance Contrast Saturation
* Ours 71.3% 83.7% 69.7% 3.43 + 0.04
) ) CycleGAN 61.4% 71.1% 82.6% 2.47 £0.04
receptive field (1/3 of the Pix2pix 92.4% 83.3% 86.5% 3.37 + 0.04
whole image width) is too Human - - : 3.30 £ 0.04
Expert C 100% 100% 100% 3.66 £0.03
small to capture low- i
frequency image
P c 1 A h Hist Int ti User Rati
variations(which is a feature pproac istogram niersection ser Haling
Luminance Contrast Saturation
of this artist). Ours 82.4% 80.0% 71.5% | 3.39+0.04
CycleGAN 63.6% 45.2% 71.8% 2.69 £0.04
A larger receptive field or downsampled image :
could be used for CycleGAN, but this would >00px artist A 1007 100% 100% 3.72 +0.04
require more training data and would produce
even lower-resolution outputs
Approach Histogram Intersection User Rating
Luminance Contrast Saturation
Ours 835.2% 91.7% 83.5% 3.22 £ 0.04
CycleGAN 60.1% 79.4% 83.4% 2.86 £ 0.04
500px artist B 100% 100% 100% 3.40 + 0.04
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APPLICATION
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» Change fixed filters into code:

image

image = e / image.mean()

| B .“ . .. -. -,:‘. .“ : | :. .‘\‘ |
‘ L e N T
K ;! 7 -.__ el S g \ ! 23 #
3 X y ‘ o ;

" Images generated by the black-box filter

Fig. 14. With the operation sequence estimated by our system, we can write
code that mimics certain black-box filters.
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FAILURE CASES
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» Cannot denoise: pixel-level denoising, may be challenging to
model as resolution-independent, differentiable filters

> faces, images with poor content, composition or lighting
conditions
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SUMMARY

» End-to-end model, differentiable filters

» Undertandable

» Without image pairs

» Transform into style of images collections

» GAN scales with image resolution and generates no distortion
artifacts in the image.

» May replace the actor-critic RL architecture and WGAN with
other related alternatives.
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