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1024 x 1024 images generated using the CELEBA-HQ dataset.



Overview

A new training methodology for GAN:
e grow both the generator and discriminator progressively

e starting from a low resolution, add new layers that model
iIncreasingly fine details as training progresses.

A simple way to increase the variation in generated
Images

Two implementation details that are important for
discouraging unhealthy competition between the
generator and discriminator.

A new metric for evaluating GAN results, both in terms of
image quality and variation.



PROGRESSIVE GROWING OF GANS
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* As the training advances, incrementally add layers to G and D,
iIncreasing the spatial resolution of the generated images.

e All existing layers remain trainable throughout the process.

8



Latent vector
4

512 channel

512 channel

1x1 Conv toRGB 3 channel

1x1 Conv fromRGB 3 channel
Conv 3x3

512 channel Conv 3x3
512 channel Downsample

!




Latent vector
4

1) not seem big difference whether we start
at 2x2, 4x4, 8x8, or 16x16 resolution.

Block 32 channel
Block 16 channel

1x1 Conv toRGB 3 channel

1x1 Conv fromRGB 3 channel

Block ~ 2) beneficial to have roughly the same

~ structure and capacity in both networks,

' as well as matching upsampling and
downsampling operators.
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PROGRESSIVE GROWING OF GANS

* When new layers are added to the networks, fade them in
smoothly
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transition (b) from 16 x 16 images (a) to 32 x 32 images (c)
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PROGRESSIVE GROWING OF GANS

* When new layers are added to the networks, fade them in
smoothly

| | neighbor filtering
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transition (b) from 16 x 16 images (a) to 32 x 32 images (c)

12



Training strategy:

4 x 4 resolution, train discriminator until 800k real images.
Then alternate between:

1, fade in the 3-layer block during the next 800k images
2, stabilize the networks for 800k images

Minibatch size:

16 for resolutions 42-1282 and then gradually decrease the
size according to 2562 — 14, 5122 — 6, and 10242 — 3.

Loss:

a variation of WGAN-GP loss. (LSGAN is generally a less
stable loss function than WGAN-GP, and also has a tendency
to lose some of the variation towards the end of long runs)
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PROGRESSIVE GROWING OF GANS

* For generator:

* When new layers are added to the networks, fade them in
smoothly

* For discriminator:
* images downscaled to match the current resolution.

* During a resolution transition, interpolate between two
resolutions of the real images.
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INCREASING VARIATION

e Salimans et al. (2016) suggest “minibatch discrimination”

e adding a minibatch layer towards the end of the
discriminator (compute feature statistics not only from
individual images but also across the minibatch)

 We simplify this approach drastically while also improving
the variation.

15



INCREASING VARIATION

Compute the standard deviation for each feature in each
spatial location over the minibatch

Average these estimates over all features and spatial
locations to arrive at a single value.

Concatenate the single value to all spatial locations and
over the minibatch.

This layer could be inserted anywhere in the discriminator,
but we have found it best to insert it towards the end.
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NORMALIZATION IN G AND D

* Problem: Unhealthy competition between G and D

* Most other works: using a variant of batch
normalization in the generator, and often also in the
discriminator.

e There are for eliminate covariate shift sgpipz
e We believe that the actual need in GANS is:

e constraining signal magnitudes and competition
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NORMALIZATION IN G AND D

Equalized Learning Rate

We use a N (0, 1) initialization and then scale the weights
at runtime.

e wi=wi/c, wi: weights, c: per-layer normalization
constant from He’s initializer

Benefit: relates to the scale-invariance in commonly used
adaptive stochastic gradient descent methods (such as
RMSProp and Adam)

Our approach ensures that the dynamic range, and thus
the learning speed, is the same for all weights.
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NORMALIZATION IN G AND D

Equalized Learning Rate

We use a N (( These sgd methods normalize a gradient
at runtime.  update by its estimated standard deviation,

* W =w/c,w — the update independent of the scale of
constant fri the parameter

Benefit: relate — if some parameters have a larger
adaptive stoc dynamic range than others, they will take
RMSProp anc longer to adjust

Our approact — a learning rate is both too large and too
the learning s small at the same time.

19



NORMALIZATION IN G AND D

Equalized Learning Rate

We use a N (0, 1) initialization and then scale the weights
at runtime.

e wi=wi/c, wi: weights, c: per-layer normalization
constant from He’s initializer

Benefit: relates to the scale-invariance in commonly used
adaptive stochastic gradient descent methods (such as
RMSProp and Adam)

Our approach ensures that the dynamic range, and thus
the learning speed, is the same for all weights.
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NORMALIZATION IN G AND D

e Pixelwise Feature Vector Normalization In Generator

* We normalize the feature vector in each pixel to unit length
In the generator after each convolutional layer. We do this
using a variant of “local response normalization”

xy—axy/\/N " a;y + ¢, where e = 1078,
* N is the number of feature maps

Don’t know why but it’s useful
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NEW METRIC FOR EVALUATING GAN

e Existing methods such as MS-SSIM (Odena et al., 2017)
find large-scale mode collapses reliably, but:

e fail to react to smaller effects (e.g. loss of variation in
colors or textures)

* do not directly assess image quality in terms of
similarity to the training set.
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NEW METRIC FOR EVALUATING GAN

* We think: local image structure should be similar to the
training set over all scales.

 We calculate: the multi-scale statistical similarity between
distributions of local image patches drawn from Laplacian
pyramid representations of generated and target images,
starting at a low-pass resolution of 16 x 16 pixels.
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NEW METRIC FOR EVALUATING GAN

* We think: local image structure should be similar to the
training set over all scales.

 We calculate: the multi-scale statistical similarity between
distributions of local image patches drawn from Laplacian
pyramid representations of generated and target images,
starting at a low-pass resolution of 16 x 16 pixels.
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NEW METRIC FOR EVALUATING GAN

e |Laplacian pyramid

A residual A residual

AR residual AR residual

AR e AN e

groundtruth synthesis
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NEW METRIC FOR EVALUATING GAN

M residual A residual

AR residual A residua

AW meee AT imase

groundtruth synthesis

* randomly sample 16384 images and extract 128
descriptors from each level in the Laplacian pyramid

e descriptor: 7 x7 pixel neighborhood with 3 color
channels

e Normalize {x;} and {y;} and calculate sliced Wasserstein
distance SWD
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NEW METRIC FOR EVALUATING GAN

M residual

AR residual A residua

AW meee AT imase

groundtruth synthesis

A residual

 a small Wasserstein distance — the distribution of the
patches is similar — the training images and generator

samples appear similar in both appearance and variation
at this spatial resolution.

* |lowest-level patches — similarity in large-scale image
structures; finest-level patches — pixel-level attributes
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Experiment



Dataset

o CelebA

e |arge-scale CelebFaces Attributes (CelebA) Dataset

e 202,599 images and 10,177 subjects. 5 landmark
locations, 40 binary attributes.

e LSUN BEDROOM

e LSUN: Construction of a Large-scale Image Dataset
using Deep Learning with Humans in the Loop

e one million labeled images for each of 10 scene
categories and 20 object categories
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Ablation Study

CELEBA

LSUN BEDROOM

Training configuration Sliced Wasserstein distance x 103 | MS-SSIM | Sliced Wasserstein distance x103 | MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg
(a) Gulrajani et al. (2017) 1299 779 7.62 873 9.28 0.2854 11.97 1051 8.03 14.48 11.25 0.0587
(b) + Progressive growing 4.62 2.64 378 6.06 4.28 0.2838 7.09 6.27 740 9.64 7.60 0.0615
(¢) + Small minibatch 7542 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 4275 42.46 49.52 0.1061
(d) + Revised training parameters | 9.20 6.53 471 11.84 8.07 0.3027 7.39 551 3.65 9.63 6.54 0.0662
(e*) + Minibatch discrimination 10.76  6.28 6.04 16.29 9.84 0.3057 10.29 6.22 532 11.88 8.43 0.0648
(¢)  Minibatch stddev 1394 567 282 571 7.04 0.2950 777 523 327 964 648 0.0671
(f) + Equalized learning rate 442 328 232 7.52 439 0.2902 3.61 332 271 644 402 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 513 3.56 0.2845 3.89 3.05 324 587 4.01 0.0640
(h) Converged 242 217 224 499 2096 0.2828 347 260 230 487 3.31 0.0636

* |ow-capacity network structure to amplify the differences
between training configurations

* terminating the training once the discriminator has been

shown a total of 10M real images -> the results are not fully

converged
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=D and MSSSIM

Wasserstein GANs

CELEBA LSUN BEDROOM
Training configuration Sliced Wasserstein distance x10% | MS-SSIM | Sliced Wasserstein distance x10° | MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg
(a) Gulrajani et al. (2017) 1299 779 7.62 873 9.28 0.2854 11.97 1051 8.03 14.48 11.25 0.0587
(b) + Progressive growing 4.62 2.64 378 6.06 4.28 0.2838 7.09 627 740 9.64 7.60 0.0615
(¢) + Small minibatch 7542 41.33 41.62 26.57 46.23 0.4065 7273 40.16 42775 42.46 49.52 0.1061

(d) + Revised training parameters | 9.20 6.53 471 11.84 8.07 0.3027 7.39 551 3.65 9.63 6.54 0.0662
(e*) + Minibatch discrimination 10.76 __6.28 6.04 16.29 9.84 0.3057 10.29 6.22 532 11.88 8.43 0.0648

(e)  Minibatch stddev 13.94 5.67 2.82 5.71 7.04 0.2950 7.77 523 327 9.64 6.48 0.0671
(f) + Equalized learning rate 442 328 232 752 4.39 0.2902 361 332 271 644 4.02 0.0668
(g) + Pixelwise normalization 406 3.04 202 513 3.56 0.2845 389 3.05 324 587 4.01 0.0640
(h) Converged 242 217 224 499 296 0.2828 347 2,60 230 487 3.31 0.0636

(h) Converged

Notice that some images show aliasing and some are not sharp - this is a flaw of the dataset, which the model learns to replicate faithfully.
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Our CELEBA-HQ results

Nearest neighbors
found from the training
data, based on feature-
space distance.

(Only the crop highlighted in bottom
right image was used for comparison
in order to exclude image background
and focus the search on matching
facial features. )



Least squares generative
adversarial networks Improved training of
(LSGAN) Wasserstein GANs

Mao et al. (2016b) (128 x 128)

Visual quality comparison in LSUN BEDROOM
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https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

We trained a Generative Adversarial Network using
30,000 celebrity photos (CelebA-HQ)

The network learned to generate entirely new images
that mimic the appearance of real photos

> Pl o) 046/543




CONVERGENCE AND TRAINING SPEED
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(On a single-GPU setup using NVIDIA Tesla P100)

(@) sliced Wasserstein distance on one level of the Laplacian pyramid, the vertical line
iIndicates the point where we stop the training in Table 1.

(b) The vertical lines indicate points where we double the resolution of G and D.

(c) Effect of progressive growing on the raw training speed in 1024 x 1024 resolution.
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Other

e Rating: 5.67

e Why? Chair says: “AnonReviewer1 (gives rating 1) has
noted that the authors have revealed their names through
GitHub, thus violating the double-blind submission
requirement of ICLR; if not for this issue, the reviewer’s
rating would have been 8.”
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