
PROGRESSIVE GROWING OF
GANS FOR IMPROVED QUALITY,

STABILITY, AND VARIATION
2018 ICLR oral

Wenjing Wang 20180506

�1

!2

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

1024 × 1024 images generated using the CELEBA-HQ dataset.

Overview
• A new training methodology for GAN:

• grow both the generator and discriminator progressively

• starting from a low resolution, add new layers that model
increasingly fine details as training progresses.

• A simple way to increase the variation in generated
images

• Two implementation details that are important for
discouraging unhealthy competition between the
generator and discriminator.

• A new metric for evaluating GAN results, both in terms of
image quality and variation.

!7

PROGRESSIVE GROWING OF GANS
Published as a conference paper at ICLR 2018

4x4
G

D

4x4

8x8

Reals

4x4

4x4

Reals

8x8

4x4

Latent

Reals

4x4

…

Training progresses

LatentLatent

1024x1024

1024x1024

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4⇥4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here N ⇥N refers to convolutional layers operating on N ⇥ N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024⇥ 1024.

Another benefit is the reduced training time. With progressively growing GANs most of the itera-
tions are done at lower resolutions, and comparable result quality is often obtained up to 2–6 times
faster, depending on the final output resolution.

The idea of growing GANs progressively is related to the work of Wang et al. (2017), who use mul-
tiple discriminators that operate on different spatial resolutions. That work in turn is motivated by
Durugkar et al. (2016) who use one generator and multiple discriminators concurrently, and Ghosh
et al. (2017) who do the opposite with multiple generators and one discriminator. Hierarchical
GANs (Denton et al., 2015; Huang et al., 2016; Zhang et al., 2017) define a generator and discrimi-
nator for each level of an image pyramid. These methods build on the same observation as our work
– that the complex mapping from latents to high-resolution images is easier to learn in steps – but
the crucial difference is that we have only a single GAN instead of a hierarchy of them. In contrast
to early work on adaptively growing networks, e.g., growing neural gas (Fritzke, 1995) and neuro
evolution of augmenting topologies (Stanley & Miikkulainen, 2002) that grow networks greedily,
we simply defer the introduction of pre-configured layers. In that sense our approach resembles
layer-wise training of autoencoders (Bengio et al., 2007).

3 INCREASING VARIATION USING MINIBATCH STANDARD DEVIATION

GANs have a tendency to capture only a subset of the variation found in training data, and Salimans
et al. (2016) suggest “minibatch discrimination” as a solution. They compute feature statistics not
only from individual images but also across the minibatch, thus encouraging the minibatches of
generated and training images to show similar statistics. This is implemented by adding a minibatch
layer towards the end of the discriminator, where the layer learns a large tensor that projects the
input activation to an array of statistics. A separate set of statistics is produced for each example in a
minibatch and it is concatenated to the layer’s output, so that the discriminator can use the statistics
internally. We simplify this approach drastically while also improving the variation.

Our simplified solution has neither learnable parameters nor new hyperparameters. We first compute
the standard deviation for each feature in each spatial location over the minibatch. We then average
these estimates over all features and spatial locations to arrive at a single value. We replicate the
value and concatenate it to all spatial locations and over the minibatch, yielding one additional (con-
stant) feature map. This layer could be inserted anywhere in the discriminator, but we have found it
best to insert it towards the end (see Appendix A.1 for details). We experimented with a richer set
of statistics, but were not able to improve the variation further. In parallel work, Lin et al. (2017)
provide theoretical insights about the benefits of showing multiple images to the discriminator.

3

• As the training advances, incrementally add layers to G and D,
increasing the spatial resolution of the generated images.

• All existing layers remain trainable throughout the process.
!8

Conv 4×4

Conv 3×3

1×1 Conv toRGB

1×1 Conv fromRGB

Block

Block

Block

Block

Conv 3×3

Conv 3×3

Upsample

Conv 3×3

Conv 3×3

Downsample

Conv 4×4

Conv 3×3

512 channel

512 channel

16 channel

……

……

3 channel

3 channel

16 channel

512 channel

512 channel

32 channel

32 channel

!9

Latent vector

Conv 4×4

Conv 3×3

1×1 Conv toRGB

1×1 Conv fromRGB

Block

Block

Block

Block

Conv 3×3

Conv 3×3

Upsample

Conv 3×3

Conv 3×3

Upsample

Conv 4×4

Conv 3×3

512 channel

512 channel

16 channel

……

……

3 channel

3 channel

16 channel

512 channel

512 channel

32 channel

32 channel

!10

1) not seem big difference whether we start
at 2x2, 4x4, 8x8, or 16x16 resolution.

 2) beneficial to have roughly the same
structure and capacity in both networks,
as well as matching upsampling and
downsampling operators.

Latent vector

PROGRESSIVE GROWING OF GANS Published as a conference paper at ICLR 2018

16x16G

D

16x16

toRGB

fromRGB

16x16

16x16

toRGB

fromRGB
32x32

32x32
2x

0.5x

16x16

16x16

32x32

32x32

2x

+

toRGB

fromRGB

+

toRGB

0.5x

⍺

⍺1-⍺

1-⍺

(a) (b) (c)

0.5xfromRGB

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 ⇥ 16 images (a) to 32 ⇥ 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight ↵ increases linearly from 0 to 1. Here 2⇥ and 0.5⇥ refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does
the reverse; both use 1 ⇥ 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

Alternative solutions to the variation problem include unrolling the discriminator (Metz et al., 2016)
to regularize its updates, and a “repelling regularizer” (Zhao et al., 2017) that adds a new loss term
to the generator, trying to encourage it to orthogonalize the feature vectors in a minibatch. The
multiple generators of Ghosh et al. (2017) also serve a similar goal. We acknowledge that these
solutions may increase the variation even more than our solution – or possibly be orthogonal to it –
but leave a detailed comparison to a later time.

4 NORMALIZATION IN GENERATOR AND DISCRIMINATOR

GANs are prone to the escalation of signal magnitudes as a result of unhealthy competition between
the two networks. Most if not all earlier solutions discourage this by using a variant of batch nor-
malization (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ba et al., 2016) in the generator, and
often also in the discriminator. These normalization methods were originally introduced to elimi-
nate covariate shift. However, we have not observed that to be an issue in GANs, and thus believe
that the actual need in GANs is constraining signal magnitudes and competition. We use a different
approach that consists of two ingredients, neither of which include learnable parameters.

4.1 EQUALIZED LEARNING RATE

We deviate from the current trend of careful weight initialization, and instead use a trivial N (0, 1)
initialization and then explicitly scale the weights at runtime. To be precise, we set ŵi = wi/c,
where wi are the weights and c is the per-layer normalization constant from He’s initializer (He
et al., 2015). The benefit of doing this dynamically instead of during initialization is somewhat
subtle, and relates to the scale-invariance in commonly used adaptive stochastic gradient descent
methods such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015). These
methods normalize a gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters have a larger dynamic
range than others, they will take longer to adjust. This is a scenario modern initializers cause, and
thus it is possible that a learning rate is both too large and too small at the same time. Our approach
ensures that the dynamic range, and thus the learning speed, is the same for all weights. A similar
reasoning was independently used by van Laarhoven (2017).

4

• When new layers are added to the networks, fade them in
smoothly

transition (b) from 16 × 16 images (a) to 32 × 32 images (c)

!11

PROGRESSIVE GROWING OF GANS Published as a conference paper at ICLR 2018

16x16G

D

16x16

toRGB

fromRGB

16x16

16x16

toRGB

fromRGB
32x32

32x32
2x

0.5x

16x16

16x16

32x32

32x32

2x

+

toRGB

fromRGB

+

toRGB

0.5x

⍺

⍺1-⍺

1-⍺

(a) (b) (c)

0.5xfromRGB

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 ⇥ 16 images (a) to 32 ⇥ 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight ↵ increases linearly from 0 to 1. Here 2⇥ and 0.5⇥ refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does
the reverse; both use 1 ⇥ 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

Alternative solutions to the variation problem include unrolling the discriminator (Metz et al., 2016)
to regularize its updates, and a “repelling regularizer” (Zhao et al., 2017) that adds a new loss term
to the generator, trying to encourage it to orthogonalize the feature vectors in a minibatch. The
multiple generators of Ghosh et al. (2017) also serve a similar goal. We acknowledge that these
solutions may increase the variation even more than our solution – or possibly be orthogonal to it –
but leave a detailed comparison to a later time.

4 NORMALIZATION IN GENERATOR AND DISCRIMINATOR

GANs are prone to the escalation of signal magnitudes as a result of unhealthy competition between
the two networks. Most if not all earlier solutions discourage this by using a variant of batch nor-
malization (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ba et al., 2016) in the generator, and
often also in the discriminator. These normalization methods were originally introduced to elimi-
nate covariate shift. However, we have not observed that to be an issue in GANs, and thus believe
that the actual need in GANs is constraining signal magnitudes and competition. We use a different
approach that consists of two ingredients, neither of which include learnable parameters.

4.1 EQUALIZED LEARNING RATE

We deviate from the current trend of careful weight initialization, and instead use a trivial N (0, 1)
initialization and then explicitly scale the weights at runtime. To be precise, we set ŵi = wi/c,
where wi are the weights and c is the per-layer normalization constant from He’s initializer (He
et al., 2015). The benefit of doing this dynamically instead of during initialization is somewhat
subtle, and relates to the scale-invariance in commonly used adaptive stochastic gradient descent
methods such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015). These
methods normalize a gradient update by its estimated standard deviation, thus making the update
independent of the scale of the parameter. As a result, if some parameters have a larger dynamic
range than others, they will take longer to adjust. This is a scenario modern initializers cause, and
thus it is possible that a learning rate is both too large and too small at the same time. Our approach
ensures that the dynamic range, and thus the learning speed, is the same for all weights. A similar
reasoning was independently used by van Laarhoven (2017).

4

• When new layers are added to the networks, fade them in
smoothly

transition (b) from 16 × 16 images (a) to 32 × 32 images (c)

average pooling

like a residual block

α increases linearly from 0 to 1

neighbor filtering

!12

Training strategy:

4 × 4 resolution, train discriminator until 800k real images.

Then alternate between:

1, fade in the 3-layer block during the next 800k images

2, stabilize the networks for 800k images

Minibatch size:

16 for resolutions 42–1282 and then gradually decrease the
size according to 2562 → 14, 5122 → 6, and 10242 → 3.

Loss:

a variation of WGAN-GP loss. (LSGAN is generally a less
stable loss function than WGAN-GP, and also has a tendency
to lose some of the variation towards the end of long runs)

!13

PROGRESSIVE GROWING OF GANS
• For generator:

• When new layers are added to the networks, fade them in
smoothly

• For discriminator:

• images downscaled to match the current resolution.

• During a resolution transition, interpolate between two
resolutions of the real images.

!14

INCREASING VARIATION
• Salimans et al. (2016) suggest “minibatch discrimination”

• adding a minibatch layer towards the end of the
discriminator (compute feature statistics not only from
individual images but also across the minibatch)

• We simplify this approach drastically while also improving
the variation.

!15

INCREASING VARIATION
• Compute the standard deviation for each feature in each

spatial location over the minibatch

• Average these estimates over all features and spatial
locations to arrive at a single value.

• Concatenate the single value to all spatial locations and
over the minibatch.

• This layer could be inserted anywhere in the discriminator,
but we have found it best to insert it towards the end.

!16

NORMALIZATION IN G AND D
• Problem: Unhealthy competition between G and D

• Most other works: using a variant of batch
normalization in the generator, and often also in the
discriminator.

• There are for eliminate covariate shift ၾᴻݒܐ

• We believe that the actual need in GANs is:

• constraining signal magnitudes and competition

!17

NORMALIZATION IN G AND D

• Equalized Learning Rate

• We use a N (0, 1) initialization and then scale the weights
at runtime.

• wi = wi/c, wi: weights, c: per-layer normalization
constant from He’s initializer

• Benefit: relates to the scale-invariance in commonly used
adaptive stochastic gradient descent methods (such as
RMSProp and Adam)

• Our approach ensures that the dynamic range, and thus
the learning speed, is the same for all weights.

!18

NORMALIZATION IN G AND D

• Equalized Learning Rate

• We use a N (0, 1) initialization and then scale the weights
at runtime.

• wi = wi/c, wi: weights, c: per-layer normalization
constant from He’s initializer

• Benefit: relates to the scale-invariance in commonly used
adaptive stochastic gradient descent methods (such as
RMSProp and Adam)

• Our approach ensures that the dynamic range, and thus
the learning speed, is the same for all weights.

!19

These sgd methods normalize a gradient
update by its estimated standard deviation,

→ the update independent of the scale of
the parameter

→ if some parameters have a larger
dynamic range than others, they will take
longer to adjust

→ a learning rate is both too large and too
small at the same time.

NORMALIZATION IN G AND D

• Equalized Learning Rate

• We use a N (0, 1) initialization and then scale the weights
at runtime.

• wi = wi/c, wi: weights, c: per-layer normalization
constant from He’s initializer

• Benefit: relates to the scale-invariance in commonly used
adaptive stochastic gradient descent methods (such as
RMSProp and Adam)

• Our approach ensures that the dynamic range, and thus
the learning speed, is the same for all weights.

!20

NORMALIZATION IN G AND D
• Pixelwise Feature Vector Normalization In Generator

• We normalize the feature vector in each pixel to unit length
in the generator after each convolutional layer. We do this
using a variant of “local response normalization”

• N is the number of feature maps

• We find it surprising that this heavy-handed constraint
does not seem to harm the generator in any way, and
indeed with most datasets it does not change the results
much, but it prevents the escalation of signal magnitudes
very effectively when needed.

!21

Published as a conference paper at ICLR 2018

4.2 PIXELWISE FEATURE VECTOR NORMALIZATION IN GENERATOR

To disallow the scenario where the magnitudes in the generator and discriminator spiral out of con-
trol as a result of competition, we normalize the feature vector in each pixel to unit length in the
generator after each convolutional layer. We do this using a variant of “local response normaliza-
tion” (Krizhevsky et al., 2012), configured as bx,y = ax,y/

q
1
N

PN�1
j=0 (ajx,y)2 + ✏, where ✏ = 10�8,

N is the number of feature maps, and ax,y and bx,y are the original and normalized feature vector
in pixel (x, y), respectively. We find it surprising that this heavy-handed constraint does not seem to
harm the generator in any way, and indeed with most datasets it does not change the results much,
but it prevents the escalation of signal magnitudes very effectively when needed.

5 MULTI-SCALE STATISTICAL SIMILARITY FOR ASSESSING GAN RESULTS

In order to compare the results of one GAN to another, one needs to investigate a large number of
images, which can be tedious, difficult, and subjective. Thus it is desirable to rely on automated
methods that compute some indicative metric from large image collections. We noticed that existing
methods such as MS-SSIM (Odena et al., 2017) find large-scale mode collapses reliably but fail to
react to smaller effects such as loss of variation in colors or textures, and they also do not directly
assess image quality in terms of similarity to the training set.

We build on the intuition that a successful generator will produce samples whose local image struc-
ture is similar to the training set over all scales. We propose to study this by considering the multi-
scale statistical similarity between distributions of local image patches drawn from Laplacian pyra-
mid (Burt & Adelson, 1987) representations of generated and target images, starting at a low-pass
resolution of 16 ⇥ 16 pixels. As per standard practice, the pyramid progressively doubles until the
full resolution is reached, each successive level encoding the difference to an up-sampled version of
the previous level.

A single Laplacian pyramid level corresponds to a specific spatial frequency band. We randomly
sample 16384 images and extract 128 descriptors from each level in the Laplacian pyramid, giving
us 221 (2.1M) descriptors per level. Each descriptor is a 7 ⇥ 7 pixel neighborhood with 3 color
channels, denoted by x 2 R7⇥7⇥3 = R147. We denote the patches from level l of the training set
and generated set as {xl

i}2
21

i=1 and {yl
i}2

21

i=1, respectively. We first normalize {xl
i} and {yl

i} w.r.t. the
mean and standard deviation of each color channel, and then estimate the statistical similarity by
computing their sliced Wasserstein distance SWD({xl

i}, {yl
i}), an efficiently computable random-

ized approximation to earthmovers distance, using 512 projections (Rabin et al., 2011).

Intuitively a small Wasserstein distance indicates that the distribution of the patches is similar, mean-
ing that the training images and generator samples appear similar in both appearance and variation
at this spatial resolution. In particular, the distance between the patch sets extracted from the lowest-
resolution 16 ⇥ 16 images indicate similarity in large-scale image structures, while the finest-level
patches encode information about pixel-level attributes such as sharpness of edges and noise.

6 EXPERIMENTS

In this section we discuss a set of experiments that we conducted to evaluate the quality of
our results. Please refer to Appendix A for detailed description of our network structures
and training configurations. We also invite the reader to consult the accompanying video
(https://youtu.be/G06dEcZ-QTg) for additional result images and latent space interpolations.
In this section we will distinguish between the network structure (e.g., convolutional layers, resiz-
ing), training configuration (various normalization layers, minibatch-related operations), and train-
ing loss (WGAN-GP, LSGAN).

6.1 IMPORTANCE OF INDIVIDUAL CONTRIBUTIONS IN TERMS OF STATISTICAL SIMILARITY

We will first use the sliced Wasserstein distance (SWD) and multi-scale structural similarity (MS-
SSIM) (Odena et al., 2017) to evaluate the importance our individual contributions, and also percep-
tually validate the metrics themselves. We will do this by building on top of a previous state-of-the-
art loss function (WGAN-GP) and training configuration (Gulrajani et al., 2017) in an unsupervised
setting using CELEBA (Liu et al., 2015) and LSUN BEDROOM (Yu et al., 2015) datasets in 1282

5

Don’t know why but it’s useful

NEW METRIC FOR EVALUATING GAN

• Existing methods such as MS-SSIM (Odena et al., 2017)
find large-scale mode collapses reliably, but:

• fail to react to smaller effects (e.g. loss of variation in
colors or textures)

• do not directly assess image quality in terms of
similarity to the training set.

!22

NEW METRIC FOR EVALUATING GAN

• We think: local image structure should be similar to the
training set over all scales.

• We calculate: the multi-scale statistical similarity between
distributions of local image patches drawn from Laplacian
pyramid representations of generated and target images,
starting at a low-pass resolution of 16 × 16 pixels.

!23

NEW METRIC FOR EVALUATING GAN

• We think: local image structure should be similar to the
training set over all scales.

• We calculate: the multi-scale statistical similarity between
distributions of local image patches drawn from Laplacian
pyramid representations of generated and target images,
starting at a low-pass resolution of 16 × 16 pixels.

!24

NEW METRIC FOR EVALUATING GAN
• Laplacian pyramid

!25

groundtruth synthesis

residual

residual
residual

image

residual

residual
residual

image

NEW METRIC FOR EVALUATING GAN

• randomly sample 16384 images and extract 128
descriptors from each level in the Laplacian pyramid

• descriptorғ7 ×7 pixel neighborhood with 3 color
channels

• Normalize {xj} and {yj} and calculate sliced Wasserstein
distance SWD

!26

groundtruth synthesis

residual

residual
residual

image

residual

residual
residual

image
{xj0} {yj0}

{xj1} {yj1}

NEW METRIC FOR EVALUATING GAN

• a small Wasserstein distance → the distribution of the
patches is similar → the training images and generator
samples appear similar in both appearance and variation
at this spatial resolution.

• lowest-level patches → similarity in large-scale image
structures; finest-level patches → pixel-level attributes

!27

groundtruth synthesis

residual

residual
residual

image

residual

residual
residual

image
{xj0} {yj0}

{xj1} {yj1}

Experiment

�28

Dataset
• CelebA

• Large-scale CelebFaces Attributes (CelebA) Dataset

• 202,599 images and 10,177 subjects. 5 landmark
locations, 40 binary attributes.

• LSUN BEDROOM

• LSUN: Construction of a Large-scale Image Dataset
using Deep Learning with Humans in the Loop

• one million labeled images for each of 10 scene
categories and 20 object categories

!29

!30

Published as a conference paper at ICLR 2018

CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance ⇥103 MS-SSIM Sliced Wasserstein distance ⇥103 MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 12.99 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 4.62 2.64 3.78 6.06 4.28 0.2838 7.09 6.27 7.40 9.64 7.60 0.0615
(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 42.75 42.46 49.52 0.1061
(d) + Revised training parameters 9.20 6.53 4.71 11.84 8.07 0.3027 7.39 5.51 3.65 9.63 6.54 0.0662
(e⇤) + Minibatch discrimination 10.76 6.28 6.04 16.29 9.84 0.3057 10.29 6.22 5.32 11.88 8.43 0.0648
(e) Minibatch stddev 13.94 5.67 2.82 5.71 7.04 0.2950 7.77 5.23 3.27 9.64 6.48 0.0671
(f) + Equalized learning rate 4.42 3.28 2.32 7.52 4.39 0.2902 3.61 3.32 2.71 6.44 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 5.13 3.56 0.2845 3.89 3.05 3.24 5.87 4.01 0.0640
(h) Converged 2.42 2.17 2.24 4.99 2.96 0.2828 3.47 2.60 2.30 4.87 3.31 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128⇥ 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(a) (b) (c) (d) (e⇤) (e) (f) (g) (h) Converged

Figure 3: (a) – (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp – this is a flaw of the dataset, which the model learns to replicate faithfully.

resolution. CELEBA is particularly well suited for such comparison because the training images
contain noticeable artifacts (aliasing, compression, blur) that are difficult for the generator to repro-
duce faithfully. In this test we amplify the differences between training configurations by choosing a
relatively low-capacity network structure (Appendix A.2) and terminating the training once the dis-
criminator has been shown a total of 10M real images. As such the results are not fully converged.

Table 1 lists the numerical values for SWD and MS-SSIM in several training configurations, where
our individual contributions are cumulatively enabled one by one on top of the baseline (Gulrajani
et al., 2017). The MS-SSIM numbers were averaged from 10000 pairs of generated images, and
SWD was calculated as described in Section 5. Generated CELEBA images from these configu-
rations are shown in Figure 3. Due to space constraints, the figure shows only a small number of
examples for each row of the table, but a significantly broader set is available in Appendix H. Intu-
itively, a good evaluation metric should reward plausible images that exhibit plenty of variation in
colors, textures, and viewpoints. However, this is not captured by MS-SSIM: we can immediately
see that configuration (h) generates significantly better images than configuration (a), but MS-SSIM
remains approximately unchanged because it measures only the variation between outputs, not sim-
ilarity to the training set. SWD, on the other hand, does indicate a clear improvement.

The first training configuration (a) corresponds to Gulrajani et al. (2017), featuring batch normaliza-
tion in the generator, layer normalization in the discriminator, and minibatch size of 64. (b) enables
progressive growing of the networks, which results in sharper and more believable output images.
SWD correctly finds the distribution of generated images to be more similar to the training set.

Our primary goal is to enable high output resolutions, and this requires reducing the size of mini-
batches in order to stay within the available memory budget. We illustrate the ensuing challenges in
(c) where we decrease the minibatch size from 64 to 16. The generated images are unnatural, which
is clearly visible in both metrics. In (d), we stabilize the training process by adjusting the hyperpa-
rameters as well as by removing batch normalization and layer normalization (Appendix A.2). As an
intermediate test (e⇤), we enable minibatch discrimination (Salimans et al., 2016), which somewhat
surprisingly fails to improve any of the metrics, including MS-SSIM that measures output variation.
In contrast, our minibatch standard deviation (e) improves the average SWD scores and images. We
then enable our remaining contributions in (f) and (g), leading to an overall improvement in SWD

6

• low-capacity network structure to amplify the differences
between training configurations

• terminating the training once the discriminator has been
shown a total of 10M real images -> the results are not fully
converged

Ablation Study

!31

Published as a conference paper at ICLR 2018

CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance ⇥103 MS-SSIM Sliced Wasserstein distance ⇥103 MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 12.99 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 4.62 2.64 3.78 6.06 4.28 0.2838 7.09 6.27 7.40 9.64 7.60 0.0615
(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 42.75 42.46 49.52 0.1061
(d) + Revised training parameters 9.20 6.53 4.71 11.84 8.07 0.3027 7.39 5.51 3.65 9.63 6.54 0.0662
(e⇤) + Minibatch discrimination 10.76 6.28 6.04 16.29 9.84 0.3057 10.29 6.22 5.32 11.88 8.43 0.0648
(e) Minibatch stddev 13.94 5.67 2.82 5.71 7.04 0.2950 7.77 5.23 3.27 9.64 6.48 0.0671
(f) + Equalized learning rate 4.42 3.28 2.32 7.52 4.39 0.2902 3.61 3.32 2.71 6.44 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 5.13 3.56 0.2845 3.89 3.05 3.24 5.87 4.01 0.0640
(h) Converged 2.42 2.17 2.24 4.99 2.96 0.2828 3.47 2.60 2.30 4.87 3.31 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128⇥ 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(a) (b) (c) (d) (e⇤) (e) (f) (g) (h) Converged

Figure 3: (a) – (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp – this is a flaw of the dataset, which the model learns to replicate faithfully.

resolution. CELEBA is particularly well suited for such comparison because the training images
contain noticeable artifacts (aliasing, compression, blur) that are difficult for the generator to repro-
duce faithfully. In this test we amplify the differences between training configurations by choosing a
relatively low-capacity network structure (Appendix A.2) and terminating the training once the dis-
criminator has been shown a total of 10M real images. As such the results are not fully converged.

Table 1 lists the numerical values for SWD and MS-SSIM in several training configurations, where
our individual contributions are cumulatively enabled one by one on top of the baseline (Gulrajani
et al., 2017). The MS-SSIM numbers were averaged from 10000 pairs of generated images, and
SWD was calculated as described in Section 5. Generated CELEBA images from these configu-
rations are shown in Figure 3. Due to space constraints, the figure shows only a small number of
examples for each row of the table, but a significantly broader set is available in Appendix H. Intu-
itively, a good evaluation metric should reward plausible images that exhibit plenty of variation in
colors, textures, and viewpoints. However, this is not captured by MS-SSIM: we can immediately
see that configuration (h) generates significantly better images than configuration (a), but MS-SSIM
remains approximately unchanged because it measures only the variation between outputs, not sim-
ilarity to the training set. SWD, on the other hand, does indicate a clear improvement.

The first training configuration (a) corresponds to Gulrajani et al. (2017), featuring batch normaliza-
tion in the generator, layer normalization in the discriminator, and minibatch size of 64. (b) enables
progressive growing of the networks, which results in sharper and more believable output images.
SWD correctly finds the distribution of generated images to be more similar to the training set.

Our primary goal is to enable high output resolutions, and this requires reducing the size of mini-
batches in order to stay within the available memory budget. We illustrate the ensuing challenges in
(c) where we decrease the minibatch size from 64 to 16. The generated images are unnatural, which
is clearly visible in both metrics. In (d), we stabilize the training process by adjusting the hyperpa-
rameters as well as by removing batch normalization and layer normalization (Appendix A.2). As an
intermediate test (e⇤), we enable minibatch discrimination (Salimans et al., 2016), which somewhat
surprisingly fails to improve any of the metrics, including MS-SSIM that measures output variation.
In contrast, our minibatch standard deviation (e) improves the average SWD scores and images. We
then enable our remaining contributions in (f) and (g), leading to an overall improvement in SWD

6

SWD and MSSSIM

Published as a conference paper at ICLR 2018

CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance ⇥103 MS-SSIM Sliced Wasserstein distance ⇥103 MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 12.99 7.79 7.62 8.73 9.28 0.2854 11.97 10.51 8.03 14.48 11.25 0.0587

(b) + Progressive growing 4.62 2.64 3.78 6.06 4.28 0.2838 7.09 6.27 7.40 9.64 7.60 0.0615
(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 42.75 42.46 49.52 0.1061
(d) + Revised training parameters 9.20 6.53 4.71 11.84 8.07 0.3027 7.39 5.51 3.65 9.63 6.54 0.0662
(e⇤) + Minibatch discrimination 10.76 6.28 6.04 16.29 9.84 0.3057 10.29 6.22 5.32 11.88 8.43 0.0648
(e) Minibatch stddev 13.94 5.67 2.82 5.71 7.04 0.2950 7.77 5.23 3.27 9.64 6.48 0.0671
(f) + Equalized learning rate 4.42 3.28 2.32 7.52 4.39 0.2902 3.61 3.32 2.71 6.44 4.02 0.0668
(g) + Pixelwise normalization 4.06 3.04 2.02 5.13 3.56 0.2845 3.89 3.05 3.24 5.87 4.01 0.0640
(h) Converged 2.42 2.17 2.24 4.99 2.96 0.2828 3.47 2.60 2.30 4.87 3.31 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128⇥ 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(a) (b) (c) (d) (e⇤) (e) (f) (g) (h) Converged

Figure 3: (a) – (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp – this is a flaw of the dataset, which the model learns to replicate faithfully.

resolution. CELEBA is particularly well suited for such comparison because the training images
contain noticeable artifacts (aliasing, compression, blur) that are difficult for the generator to repro-
duce faithfully. In this test we amplify the differences between training configurations by choosing a
relatively low-capacity network structure (Appendix A.2) and terminating the training once the dis-
criminator has been shown a total of 10M real images. As such the results are not fully converged.

Table 1 lists the numerical values for SWD and MS-SSIM in several training configurations, where
our individual contributions are cumulatively enabled one by one on top of the baseline (Gulrajani
et al., 2017). The MS-SSIM numbers were averaged from 10000 pairs of generated images, and
SWD was calculated as described in Section 5. Generated CELEBA images from these configu-
rations are shown in Figure 3. Due to space constraints, the figure shows only a small number of
examples for each row of the table, but a significantly broader set is available in Appendix H. Intu-
itively, a good evaluation metric should reward plausible images that exhibit plenty of variation in
colors, textures, and viewpoints. However, this is not captured by MS-SSIM: we can immediately
see that configuration (h) generates significantly better images than configuration (a), but MS-SSIM
remains approximately unchanged because it measures only the variation between outputs, not sim-
ilarity to the training set. SWD, on the other hand, does indicate a clear improvement.

The first training configuration (a) corresponds to Gulrajani et al. (2017), featuring batch normaliza-
tion in the generator, layer normalization in the discriminator, and minibatch size of 64. (b) enables
progressive growing of the networks, which results in sharper and more believable output images.
SWD correctly finds the distribution of generated images to be more similar to the training set.

Our primary goal is to enable high output resolutions, and this requires reducing the size of mini-
batches in order to stay within the available memory budget. We illustrate the ensuing challenges in
(c) where we decrease the minibatch size from 64 to 16. The generated images are unnatural, which
is clearly visible in both metrics. In (d), we stabilize the training process by adjusting the hyperpa-
rameters as well as by removing batch normalization and layer normalization (Appendix A.2). As an
intermediate test (e⇤), we enable minibatch discrimination (Salimans et al., 2016), which somewhat
surprisingly fails to improve any of the metrics, including MS-SSIM that measures output variation.
In contrast, our minibatch standard deviation (e) improves the average SWD scores and images. We
then enable our remaining contributions in (f) and (g), leading to an overall improvement in SWD

6

Notice that some images show aliasing and some are not sharp – this is a flaw of the dataset, which the model learns to replicate faithfully.

Improved training of
Wasserstein GANs

!32

Published as a conference paper at ICLR 2018

Figure 10: Top: Our CELEBA-HQ results. Next five rows: Nearest neighbors found from the train-
ing data, based on feature-space distance. We used activations from five VGG layers, as suggested
by Chen & Koltun (2017). Only the crop highlighted in bottom right image was used for comparison
in order to exclude image background and focus the search on matching facial features.

18

Nearest neighbors
found from the training
data, based on feature-
space distance.

(Only the crop highlighted in bottom
right image was used for comparison
in order to exclude image background
and focus the search on matching
facial features.)

Our CELEBA-HQ results

!33

Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

Visual quality comparison in LSUN BEDROOM

Least squares generative
adversarial networks

(LSGAN)
Improved training of
Wasserstein GANs

!34

https://www.youtube.com/watch?v=G06dEcZ-QTg&feature=youtu.be

�35

Published as a conference paper at ICLR 2018

2

4

8

16

32

64

128

0 12 24 36 48 60 72 84 96

Sl
ic

ed
 W

as
se

rs
te

in
 d

ist
an

ce
×1

03

Training time in hours

128 64 32 16 Avg

Snapshot

2

4

8

16

32

64

128

0 6 12 18 24 30 36 42 48

Sl
ic

ed
 W

as
se

rs
te

in
 d

ist
an

ce
×1

03

Training time in hours

128 64 32 16 Avg

128x12864x64 Snapshot

0

1

2

3

4

5

6

7

0 12 24 36 48 60 72 84 96

M
ill

io
ns

 o
f r

ea
l i

m
ag

es
 sh

ow
n

Training time in hours

Fixed layers Progressive growing

1024x1024512x512

(a) (b) (c)

Figure 4: Effect of progressive growing on training speed and convergence. The timings were
measured on a single-GPU setup using NVIDIA Tesla P100. (a) Statistical similarity with respect
to wall clock time for Gulrajani et al. (2017) using CELEBA at 128 ⇥ 128 resolution. Each graph
represents sliced Wasserstein distance on one level of the Laplacian pyramid, and the vertical line
indicates the point where we stop the training in Table 1. (b) Same graph with progressive growing
enabled. The dashed vertical lines indicate points where we double the resolution of G and D. (c)
Effect of progressive growing on the raw training speed in 1024⇥ 1024 resolution.

and subjective visual quality. Finally, in (h) we use a non-crippled network and longer training – we
feel the quality of the generated images is at least comparable to the best published results so far.

6.2 CONVERGENCE AND TRAINING SPEED

Figure 4 illustrates the effect of progressive growing in terms of the SWD metric and raw image
throughput. The first two plots correspond to the training configuration of Gulrajani et al. (2017)
without and with progressive growing. We observe that the progressive variant offers two main ben-
efits: it converges to a considerably better optimum and also reduces the total training time by about
a factor of two. The improved convergence is explained by an implicit form of curriculum learn-
ing that is imposed by the gradually increasing network capacity. Without progressive growing, all
layers of the generator and discriminator are tasked with simultaneously finding succinct interme-
diate representations for both the large-scale variation and the small-scale detail. With progressive
growing, however, the existing low-resolution layers are likely to have already converged early on,
so the networks are only tasked with refining the representations by increasingly smaller-scale ef-
fects as new layers are introduced. Indeed, we see in Figure 4(b) that the largest-scale statistical
similarity curve (16) reaches its optimal value very quickly and remains consistent throughout the
rest of the training. The smaller-scale curves (32, 64, 128) level off one by one as the resolution is
increased, but the convergence of each curve is equally consistent. With non-progressive training in
Figure 4(a), each scale of the SWD metric converges roughly in unison, as could be expected.

The speedup from progressive growing increases as the output resolution grows. Figure 4(c) shows
training progress, measured in number of real images shown to the discriminator, as a function of
training time when the training progresses all the way to 10242 resolution. We see that progressive
growing gains a significant head start because the networks are shallow and quick to evaluate at
the beginning. Once the full resolution is reached, the image throughput is equal between the two
methods. The plot shows that the progressive variant reaches approximately 6.4 million images in
96 hours, whereas it can be extrapolated that the non-progressive variant would take about 520 hours
to reach the same point. In this case, the progressive growing offers roughly a 5.4⇥ speedup.

6.3 HIGH-RESOLUTION IMAGE GENERATION USING CELEBA-HQ DATASET

To meaningfully demonstrate our results at high output resolutions, we need a sufficiently varied
high-quality dataset. However, virtually all publicly available datasets previously used in GAN
literature are limited to relatively low resolutions ranging from 322 to 4802. To this end, we created
a high-quality version of the CELEBA dataset consisting of 30000 of the images at 1024 ⇥ 1024
resolution. We refer to Appendix C for further details about the generation of this dataset.

7

CONVERGENCE AND TRAINING SPEED

(On a single-GPU setup using NVIDIA Tesla P100)

(a) sliced Wasserstein distance on one level of the Laplacian pyramid, the vertical line

indicates the point where we stop the training in Table 1.

(b) The vertical lines indicate points where we double the resolution of G and D.

(c) Effect of progressive growing on the raw training speed in 1024 × 1024 resolution.

Other
• Rating: 5.67

• Why? Chair says: “AnonReviewer1 (gives rating 1) has
noted that the authors have revealed their names through
GitHub, thus violating the double-blind submission
requirement of ICLR; if not for this issue, the reviewer’s
rating would have been 8.”

!36

