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Abstract
Recent years have witnessed significant progress in example-based texture synthesis algorithms. Given an example
texture, these methods produce a larger texture that is tailored to the user’s needs. In this state-of-the-art report,
we aim to achieve three goals: (1) provide a tutorial that is easy to follow for readers who are not already familiar
with the subject, (2) make a comprehensive survey and comparisons of different methods, and (3) sketch a vision
for future work that can help motivate and guide readers that are interested in texture synthesis research. We cover
fundamental algorithms as well as extensions and applications of texture synthesis.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture:
Graphics Processors; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Texture;

Keywords: texture synthesis, texture mapping, pixel, patch, optimization, surface, video, flow, fluids, parallel
computing, real-time rendering, solid, globally varying, inverse synthesis, super-resolution, geometry

1. Introduction

Texturing is a core process for computer graphics applica-
tions. The texturing process can be divided into three com-
ponents: (1) texture acquisition, (2) texture mapping, and (3)
texture rendering, which includes a variety of issues such
as access, sampling, and filtering. Although a source tex-
ture can be acquired by a variety of methods such as man-
ual drawing or photography, example-based texture synthe-
sis [KWLT07] remains one of the most powerful methods
as it works on a large variety of textures, is easy to use –
the user only needs to supply an exemplar – and provides
high output quality. The result is an arbitrarily large output
texture that is visually similar to the exemplar and does not
contain any unnatural artifacts or repetition. In addition to
making texture creation easier, example-based texture syn-
thesis also provides benefits to other parts of the rendering
pipeline. Distortion free textures are automatically generated
over complex geometries, and on-the-fly generation of tex-
ture content strongly reduces storage requirements.

In this paper, we provide a state-of-the-art report for
example-based texture synthesis. In addition to giving a
comprehensive coverage of current methods, this report can
also act as a tutorial that is easy for a novice to follow.
This report also provides a vision for experienced readers
who are interested in pursuing further research. To achieve
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Figure 1: Texture synthesis. Given a sample texture, the goal
is to synthesize a new texture that looks like the input. The
synthesized texture is tileable and can be of arbitrary size
specified by the user.

these goals, we organize the paper as follows. We start with
the fundamental concepts (Section 2) and algorithms (Sec-
tion 3), followed by various extensions and applications
(Sections 4 through 13). Although our main focus is on
texture synthesis techniques that provide high enough qual-
ity for graphics applications, we will also briefly mention
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Figure 1: Texture synthesis. Given a sample texture, the goal
is to synthesize a new texture that looks like the input. The
synthesized texture is tileable and can be of arbitrary size
specified by the user.

these goals, we organize the paper as follows. We start with
the fundamental concepts (Section 2) and algorithms (Sec-
tion 3), followed by various extensions and applications
(Sections 4 through 13). Although our main focus is on
texture synthesis techniques that provide high enough qual-
ity for graphics applications, we will also briefly mention
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Figure 4: The algorithm by [WL00]. (a) is the input texture and (b)-(e) show different synthesis stages of the output image.
Pixels in the output image are assigned in a raster scan ordering. The value of each output pixel p is determined by comparing
its spatial neighborhood N(p) with all neighborhoods in the input texture. The input pixel with the most similar neighborhood
will be assigned to the corresponding output pixel. Neighborhoods crossing the output image boundaries (shown in (b), (c) and
(e)) are handled toroidally. Although the output image starts as a random noise, only the last few rows and columns of the noise
are actually used. For clarity, we present the unused noise pixels as black. (b) synthesizing the first pixel, (c) synthesizing the
first pixel of the second row, (d) synthesizing the middle pixel, (e) synthesizing the last pixel.

borhood. Also, the output is synthesized in a pre-determined
sequence such as a scanline order instead of the inside-out
fashion as in [EL99]. The algorithm begins by initializing
the output as a noise (i.e. randomly copying pixels from the
input to the output). To determine the value for the first pixel
at the upper-left corner of the output, [WL00] simply finds
the best match for its neighborhood. However, since this is
the first pixel, its neighborhood will contain only noise pix-
els and thus it is essentially randomly copied from the in-
put. (For neighborhood pixels outside the output image, a
toroidal boundary condition is used to wrap them around.)
However, as the synthesis progresses, eventually the output
neighborhood will contain only valid pixels and the noise
values only show up in neighborhoods for pixels in the first
few rows or columns.

One primary advantage of using a fixed neighborhood is that
the search process can be easily accelerated by various meth-
ods, such as tree-structured vector quantization (TSVQ), kd-
tree, or k-coherence; we will talk more about acceleration in
Section 3.2. Another advantage is that a fixed neighborhood
could be extended for a variety of synthesis orders; in ad-
dition to the scanline order as illustrated in Figure 4, other
synthesis orders are also possible such as multi-resolution
synthesis, which facilitates the use of smaller neighbor-
hoods to capture larger texture elements/patterns, or order-
independent synthesis, which allows parallel computation
and random access as discussed in Section 7.

3.2. Acceleration

The basic neighborhood search algorithms [EL99, WL00]
have issues both in quality and speed. Quality-wise, lo-
cal neighborhood search would often result in noisy results
[WL00] or garbage regions [EL99]. Speed-wise, exhaustive
search can be computationally slow.

Throughout the years many solutions have been proposed
to solve these quality and speed issues (e.g. tree search
[WL00,KEBK05]), but so far the most effective methods are
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Figure 5: Illustration of K-coherence algorithm. The final
value of output pixel O is chosen from its candidate set,
shown as blue pixels on the input. See main text for details.

based on the notion of coherence. One of the first papers that
explored coherence was [Ash01] and the basic idea is pretty
simple. When pixels are copied from input to output during
the synthesis process, it is very unlikely that they will land
on random output locations. Instead, pixels that are together
in the input ought to have a tendency to be also together in
the output. Similar ideas have also appeared in other meth-
ods such as jump maps [ZG04] and k-coherence [TZL⇤02].
In our experience, k-coherence is one of the best algorithms
in terms of quality and speed, so we focus on it here.

The k-coherence algorithm is divided into two phases: anal-
ysis and synthesis. During analysis, the algorithm builds a
similarity-set for each input texel, where the similarity-set
contains a list of other texels with similar neighborhoods
to the specific input texel. During synthesis, the algorithm
copies pixel from the input to the output, but in addition to
colors, we also copy the source pixel location. To synthesize
a particular output pixel, the algorithm builds a candidate-
set by taking the union of all similarity-sets of the neighbor-
hood texels for each output texel, and then searches through
this candidate-set to find out the best match. The size of the
similarity-set, K, is a user-controllable parameter (usually in
the range [2 11]) that determines the overall speed/quality.
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Perhaps the best way to explain this K-coherence algorithm
is by an example, as illustrated in Figure 5. During analysis,
we compute a similarity set for each input pixel. For exam-
ple, since pixels A and B are the two most similar neigh-
borhoods to pixel 1, they constitute pixel 1’s similarity set
in addition to pixel 1 itself. During synthesis, the pixels are
copied from input to output, including both color and loca-
tion information. To synthesize output pixel O, we look at
its 8 spatial neighbors that are already synthesized, shown in
green pixels with numerical marks 1 to 8. We build pixel O’s
candidate set from the similarity sets of the 8 spatial neigh-
bors. For example, since pixel 1 is one pixel up and one pixel
left with respect to pixel O, it contributes the 3 blue pixels
with complementary shifting from pixel 1’s similarity set,
including pixel 1 itself and pixels A and B. Similar process
can be conducted for pixels 2 to 8. In the end, the candi-
date set of pixel O will include all blue pixels shown in the
input. (For clarity, we only show pixel 1’s similarity set; pix-
els 2 to 8 will have similar pixels in their similarity sets just
like pixels A and B with respect to pixel 1.) From this can-
didate set, we then search the input pixel P that has most
similar neighborhood to the output pixel O, and copy over
P’s color and location information to pixel O. This process
is repeated for every output pixel in every pyramid level (if a
multi-resolution algorithm is used) until the entire output is
synthesized.

3.3. Patch-based synthesis

outputinput

search

pixel-based
outputinput

search

patch-based

Figure 6: Comparisons of pixel-based and patch-based tex-
ture synthesis algorithms. The gray region in the output in-
dicates already synthesized portion.

The quality and speed of pixel-based approaches can be
improved by synthesizing patches rather than pixels. Intu-
itively, when the output is synthesized by assembling patches
rather than pixels from the input, the quality ought to im-
prove as pixels within the same copied patch ought to look
good with respect to each other. Figure 6 illustrates the basic
idea of patch-based texture synthesis. In some sense, patch-
based synthesis is an extension from pixel-based synthesis,
in that the units for copying are patches instead of pixels.
Specifically, in pixel-based synthesis, the output is synthe-
sized by copying pixels one by one from the input. The value
of each output pixel is determined by neighborhood search
to ensure that it is consistent with already synthesized pixels.
Patch-based synthesis is very similar to pixel-based synthe-
sis, except that instead of copying pixels, we copy patches.

As illustrated in Figure 6, to ensure output quality, patches
are selected according to its neighborhood, which, just like
in pixel-based synthesis, is a thin band of pixels around the
unit being copied (being pixel in pixel-based synthesis or
patch in patch-based synthesis).

(a) (b) (c)

Figure 7: Methods for handling adjancent patches during
synthesis. (a) two patches shown in different colors. (b) the
overlapped region is simply blended from the two patches.
(c) an optimal path is computed from the overlapped region.

The major difference between pixel-based and patch-based
algorithm lies in how the synthesis unit is copied onto the
output. In pixel-based algorithm, the copy is just a copy.
However, in patch-based algorithms, the issue is more com-
plicated as a patch, being larger than a pixel, usually over-
laps with the already synthesized portions, so some deci-
sion has to be made about how to handle the conflicting re-
gions. In [PFH00], new patches simply overwrite over exist-
ing regions. By using patches with irregular shapes, this ap-
proach took advantage of the texture masking effects of hu-
man visual system and works surprisingly well for stochastic
textures. [LLX⇤01] took a different approach by blending
the overlapped regions (Figure 7 b). As expected, this can
cause blurry artifacts in some situations. Instead of blend-
ing, [EF01] uses dynamic programming to find an optimal
path to cut through the overlapped regions, and this idea is
further improved by [KSE⇤03] via graph cut (Figure 7 c).
Finally, another possibility is to warp the patches to ensure
pattern continuity across patch boundaries [SCA02,WY04].

Another approach inspired by patch-based synthesis is to
prepare sets of square patches with compatible edge con-
straints. By tiling them in the plane, different textures can be
obtained. This approach is further detailed in Section 7.2.

3.4. Texture optimization

[KEBK05] proposed texture optimization as an alternative
method beyond pixel-based and patch-based algorithms. The
algorithm is interesting in that it combines the properties
of both pixel and patch based algorithms. Similar to pixel-
based algorithms, texture optimization synthesizes an out-
put texture in the units of pixels (instead of patches). But
unlike previous pixel-based methods which synthesize pix-
els one by one in a greedy fashion, this technique consid-
ers them all together, and determine their values by optimiz-
ing a quadratic energy function. The energy function is de-
termined by mismatches of input/output neighborhoods, so
minimizing this function leads to better output quality.
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blend texture to provide a smooth transition (i.e., smooth changes
of both shape and color of texture elements) between two given ho-
mogeneous textures. In many ways, our feature-based techniques
are similar to feature-based morphing for images [Beier and Neely
1992]. With our techniques, user-specified features are represented
by a texton mask, which is a labeling map that marks the prominent
texture elements.

For synthesizing progressively-variant textures onto surfaces, the
biggest challenge is that the synthesized texture elements tend to
break apart as they progressively change. This is a serious prob-
lem since the main advantage of progressively-variant textures is
the smooth variation of texture elements, and this advantage will be
lost if texture elements break apart as they vary. To prevent break-
ing, we propose an algorithm which synthesizes a texton mask in
conjunction with the target texture. The texton masks we use have
extremely sparse histograms (e.g., binary images), making them
easier to synthesize by existing techniques such as [Efros and Le-
ung 1999; Wei and Levoy 2000]. Leveraging the power of a texton
mask so synthesized, we can maintain the integrity of texture ele-
ments on the target surface.

The rest of the paper is structured as follows: Section 2 reviews
related work. Section 3 gives an overview of the pipeline for creat-
ing progressively-variant textures on surfaces. Section 4 describes
2D texture modeling techniques. Section 5 discusses texture syn-
thesis over surfaces. Section 6 presents results. Section 7 concludes
the paper with suggestions for future work. Finally, Appendixes A
and B in the CD-ROM provide additional experimental results.

2 Related Work

Several algorithms have been proposed for synthesizing homoge-
neous textures on surfaces, including [Gorla et al. 2001; Turk 2001;
Wei and Levoy 2001; Ying et al. 2001]. The synthesis quality
these algorithms depends on the performance of the underlying
non-parametric sampling techniques [Efros and Leung 1999; Wei
and Levoy 2000]. Ashikhmin [2001] pointed out a special type of
textures, called “natural textures”, that cannot be synthesized well
by [Efros and Leung 1999; Wei and Levoy 2000]. He noted that the
L2-norm they used is a poor measure for perceptual similarity and
proposed a special-purpose algorithm for “natural textures”. Build-
ing on [Ashikhmin 2001], Ying et al. [2001] presented an algorithm
for synthesizing textures on surfaces. Hertzmann et al. [2001] com-
bined [Wei and Levoy 2000; Ashikhmin 2001] to get the benefits of
both.

Non-parametric sampling can also be done at patch level as in
[Efros and Freeman 2001; Liang et al. 2001]. Soler et al. [2002]
extended this approach for synthesizing textures on surfaces.

Dischler et al. [2002] proposed a technique for generating tex-
tures on surfaces. They first extract “texture particles” from the
sample texture by color thresholding and then paste “texture parti-
cles” onto surfaces. They also showed an example of changing the
scale of texture particles.

The algorithms reviewed so far are designed for homogeneous
textures, which are usually described by stationary Markov random
field (MRF) models (e.g., see [Zhu et al. 1998]). One way to create
textures with local variations is through chemical or biological sim-
ulations. Turk [1991] generated textures on surfaces using reaction-
diffusion differential equations. To change the size of the spots or
stripes on an animal coat, he varied the diffusion rates on the target
surfaces. Witkin and Kass [1991] obtained complex spatial varia-
tions in reaction-diffusion patterns by space-varying diffusion. Like
other procedural textures, reaction-diffusion textures are only suit-
able for modeling certain textures, and much parameter tweaking is
necessary to achieve a desired result. Recently, Walter et al. [2001]
proposed a technique for generating mammalian coat patterns by
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Figure 2: The need for input orientation field. (a) Input texture.
(b) Transition function and orientation field on the input texture.
(c) Transition function and orientation field on the output texture.
(d) Synthesis result without input orientation field. Notice that the
orientation of texture elements do not follow the desired orientation
field in (c). (e) Synthesis result with input orientation field.

biological simulation. Compared with the simulation-based tech-
niques, our approach can produce a wider class of textures. In addi-
tion, our approach usually generates more realistic textures because
of our use of real images as texture samples.

We consider a texture progressively-variant if texture character-
istics change smoothly over the texture domain. More specifically,
at each point of the texture domain there should be a neighborhood
over which the texture is stationary. Hertzmann et al. [2001], Har-
rison [2001], and Zalesny et al. [2002] studied a different type of
non-stationary texture, which is piecewise stationary in the sense
that the texture domain can be divided into patches and textures are
stationary on individual patches. Fig. 16 in [Hertzmann et al. 2001]
touches upon the theme of progressive variation but with no atten-
tion paid to the variation of texture elements. Progressively variant
textures are related to locally-stationary stochastic processes [Mal-
lat et al. 1998]. Research in this recent area has been limited to 1D
processes and at present there is no universally accepted definition
of local stationarity [Mallat 2003].

Our texton mask is similar to the texton channel proposed by
Malik et al. [1999] and the texton map presented by Guo et al.
[2001]. Unlike texton channels and texton maps which are ex-
tracted by visual learning, our texton map is interactively specified
by the user. We experimented with texton channels but found texton
masks more suitable for our goal. Texton masks are easy to specify
and they provide a lot of user control.

3 Overview

We represent a progressively-variant texture by a tuple (T,M,F,V )
with a texture image T and three user-specified control channels.
The texton mask M is a labeling map that marks the prominent tex-
ture elements in T . At each pixel p, the texton map indicates which
type of texture elements p belongs to. The orientation field is a
vector field defining a unit vector at each pixel of T , whereas the
transition function is a continuous scalar function F whose gradi-
ent determines how fast the texture T is changing. Fig. 1 contains a
texture image and its texton mask. Fig. 2 (a) and (b) show a texture
with its transition function and orientation field.

For creating a progressively-variant texture in 2D, our input con-
sists of a homogeneous texture sample and user-specified texton
mask M, transition function F and orientation field V . The specifi-
cation of F and V is similar to the familiar task of specifying vector
fields for synthesizing (homogeneous) textures on surfaces [Turk
2001]). Specification of texton mask T is based on a simple but
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Fig. 1. Flow chart of the proposed hierarchical structure-guided image completion via regularity statistics.

as Ω, and its contour is indicated by δΩ. The source regions,
on the other hand, are denoted as Φ = I − Ω. Our goal is to
fill Ω seamlessly using the information of Φ. Fig. 1 shows the
main procedure of the proposed method.

2.1. Structure-Guided Image Data Enhancement
2.1.1. Dominant Structure Line Detection
Since human eyes are sensitive to structure consistency, by
detecting and preserving linear structures, the completion
quality can be well improved. Along structure lines, image
patches demonstrate high regularity and this can be a signif-
icant cue on the determination of the lines. Inspired by [8],
we detect the regularity using patch offsets. The frequency
of the matched patches’ relative spacial offsets is calculated.
The most frequent ones form a set of dominant offsets and
are allocated to unknown pixels for completion. The offsets
extraction will be discussed in detail in Section 2.2. To take a
step further, we analyse the dominant offsets which are likely
distributed along dominant structure lines in the offset space,
as shown in Fig. 2(c). We use a RANSAC-based voting
approach [11] to detect the best fitting line as a dominant
structure line. We repeat the RANSAC process over the out-
liers to search multiple dominant structure lines (the red line
in Fig. 2(c)) until the number of inliers is less than a given
threshold.

(a) Input image I (b) Matched features (c) Structure lines

(d) Information quality (e) H(I)

H−1 H−2

H H2

(f) Enhanced results

Fig. 2. Structure-guided image data enhancement.

2.1.2. Perspective Shift Transformation
The ubiquitous foreshortening effects make the results of
MRF-based image completion methods degrade severely, for
they only perform translation operation. We put forward the
concept of Perspective Shift in addition to traditional transla-
tion. Objects are shifted in a way that satisfies foreshortening
effects. To accomplish this task, we estimate a homography
matrix that performs an image registration transformation.

We begin with Speeded Up Robust Features (SURF, [12])
points detection and compute SURF descriptors for each fea-
ture point k. Then, these feature points are matched (as shown
in Fig. 2(b)) under two spacial constraints. Guided by the
dominant structure line l, ki and kj are matched if their vector
−−→
kikj satisfies the distance constraint λmin < |

−−→
kikj | < λmax

and the angle constraint dπ(
−−→
kikj , l) < λθ, where dπ(·, ·) is

the included angle of two lines. λmin ensures no feature point
is matched with itself and λmax is considered based on the
idea of local similarity.

Then we perform a RANSAC-based voting algorithm
over the matched feature points to find the best fitting trans-
formation matrix H. We repeat the RANSAC process over
the outliers to obtain multiple perspective shift transforma-
tions. To find the optimal one, we define two measurements:

Information quantity. We use the percentage of the per-
spectively shifted known information in the missing regions
to measure the information quantity:

Rquantity(H) = |H(Φ) ∩ Ω|/|Ω|, (1)

where H(·) is the perspective shift operation and |Ω| is the
pixel number in the source region Ω.

Information quality. Textures after an ideal perspective
shift operation should match those in the original image. We
concentrate on the outer boundary of Ω with a width of λmax

pixels (denoted as ∆Ω) and define the information quality as:

Rquality(H) =

√
|∆Ω|/

∑

p∈∆Ω

(I(p)− (H(I))(p))2. (2)

Next, the optimal Ĥ is obtained by solving:
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Jetchev et al. [2016] also utilize GANs for texture synthesis, where
texture patches are generated from random noise, and patches of
the same size as the generated output are randomly selected from
the exemplar as the ground truth for adversarial training. However,
their method failed to produce high quality textures consistently.
Bergmann et al. [2017] extend this approach by introducing a pe-
riodic function into the input noise, which enables synthesizing
periodic textures with high quality. However, the approach, referred
to as PSGAN, is limited to periodic textures and thus is not applicable
to most real-world textures, as demonstrated in Figure 7.
Isola et al. [2016] demonstrate the e�ectiveness of GANs for

a variety of image-to-image translation tasks. Zhu et al. [2017]
introduce CycleGANs, where the translation network can be trained
with unpaired training data. In these tasks, the input and output
di�er in appearance, but correspond to di�erent renderings of the
same underlying structure. This is not the case in our approach,
where the goal is to extend the global structure of the exemplar.
We do so by introducing new instances of local patterns, which are
similar, but not identical, to those present in the exemplar.

3 OUR APPROACH
We begin this section with an overview of our approach, followed
by a more detailed explanation of the network architectures used
and the training procedure.

Our approach is very simple conceptually: given that our ultimate
goal is to generate larger instances that perceptually resemble a
smaller input texture exemplar, the main idea is to teach a fully
convolutional generator network how to do just that. The approach
is depicted by the diagram in Figure 4. More speci�cally, given a k⇥k
source block S cropped from the input exemplar, the generator must
learn to produce a 2k ⇥ 2k output, which is perceptually similar to
an enclosing target block T of the latter size. Note that this training
procedure is self-supervised: the ground truth extended texture
blocks are taken directly from the input texture. Since the generator
is a fully-convolutional network, once it has been trained, we can
apply it onto the entire input exemplar, or a su�ciently large portion
thereof, to generate a texture that is larger than the input (up to
double its size).
It is well known that pixel-based metrics, such as L1 or L2 are

not well suited for assessing the perceptual di�erences between
images. This is even more true when the goal is to compare di�erent
instances of the same texture, which are the output of texture syn-
thesis algorithms. On the other hand, recent work has shown the
e�ectiveness of adversarial training and GANs for a variety of image
synthesis tasks [Isola et al. 2017; Ledig et al. 2016; Zhu et al. 2017],
including texture synthesis [Bergmann et al. 2017; Li and Wand
2016]. Thus, we also adopt an adversarial training approach to train
our generator. In other words, our generator G is trained alongside
with a discriminator D [Goodfellow et al. 2014]. The discriminator
D is trained to classify whether a 2k ⇥ 2k texture block is real (a
crop from the input exemplar) or fake (synthesized by G).
In our approach, a dedicated GAN must be trained for each in-

put exemplar, which takes considerable computational resources.
But once the fully-convolutional generator has been trained, large
texture blocks may be synthesized from smaller ones in a single

𝐿1

S: 𝑘 × 𝑘

2𝑘 × 2𝑘

𝑇: 2𝑘 × 2𝑘

…

Residual Blocks

Fig. 4. Method overview. The generator learns to expand k ⇥ k texture
blocks into 2k ⇥ 2k ones using a combination of adversarial loss, L1 loss
and style loss.
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Fig. 5. Architecture of our generator and discriminator. The number of
feature channels and the spatial resolution of feature maps are respectively
specified on the top of and under each block, while the kernel sizes are
specified in the central yellow regions.

forward pass through the network, which is extremely fast when
the network runs on the GPU. The size of the k ⇥ k source blocks
that we use during the training stage should be chosen large enough
to capture the non-stationary behavior across the input exemplar.
On the other hand, it should be small enough relative to the size of
the exemplar, so that we can extract a su�cient number of di�erent
2k ⇥ 2k target blocks to train the network. In our current imple-
mentation we set k = 128, and our exemplars are typically of size
600 ⇥ 400.

Network architecture
As explained earlier, we would like to model the generator as a fully-
convolutional deep neural network. Using a fully-convolutional
network allows us to apply the generator to arbitrary-sized inputs
at test time, and reduces the number of parameters, compared to
networks with fully connected layers. Network depth is important
both for the expressive power of the generator, and for increasing the
receptive �eld of the network’s neurons. Since our goal is to capture
large-scale non-stationary behavior across the source texture block,
at some level of the network the receptive �eld should approach
the size of the source block. This may be e�ectively achieved by
introducing a chain of residual blocks [He et al. 2016].
A generator architecture that satis�es our requirements was, in

fact, already proposed by Johnson et al. [2016], who demonstrated

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.

Typically k = 128, exemplars are of size 600 × 400.  



Method

➤ The receptive field should approach the size of the source block.  

➤ Fully convolutional architecture → arbitrary-sized inputs at test time 

➤ PatchGAN discriminator 

!17

49:4 • Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang

Jetchev et al. [2016] also utilize GANs for texture synthesis, where
texture patches are generated from random noise, and patches of
the same size as the generated output are randomly selected from
the exemplar as the ground truth for adversarial training. However,
their method failed to produce high quality textures consistently.
Bergmann et al. [2017] extend this approach by introducing a pe-
riodic function into the input noise, which enables synthesizing
periodic textures with high quality. However, the approach, referred
to as PSGAN, is limited to periodic textures and thus is not applicable
to most real-world textures, as demonstrated in Figure 7.
Isola et al. [2016] demonstrate the e�ectiveness of GANs for

a variety of image-to-image translation tasks. Zhu et al. [2017]
introduce CycleGANs, where the translation network can be trained
with unpaired training data. In these tasks, the input and output
di�er in appearance, but correspond to di�erent renderings of the
same underlying structure. This is not the case in our approach,
where the goal is to extend the global structure of the exemplar.
We do so by introducing new instances of local patterns, which are
similar, but not identical, to those present in the exemplar.

3 OUR APPROACH
We begin this section with an overview of our approach, followed
by a more detailed explanation of the network architectures used
and the training procedure.

Our approach is very simple conceptually: given that our ultimate
goal is to generate larger instances that perceptually resemble a
smaller input texture exemplar, the main idea is to teach a fully
convolutional generator network how to do just that. The approach
is depicted by the diagram in Figure 4. More speci�cally, given a k⇥k
source block S cropped from the input exemplar, the generator must
learn to produce a 2k ⇥ 2k output, which is perceptually similar to
an enclosing target block T of the latter size. Note that this training
procedure is self-supervised: the ground truth extended texture
blocks are taken directly from the input texture. Since the generator
is a fully-convolutional network, once it has been trained, we can
apply it onto the entire input exemplar, or a su�ciently large portion
thereof, to generate a texture that is larger than the input (up to
double its size).
It is well known that pixel-based metrics, such as L1 or L2 are

not well suited for assessing the perceptual di�erences between
images. This is even more true when the goal is to compare di�erent
instances of the same texture, which are the output of texture syn-
thesis algorithms. On the other hand, recent work has shown the
e�ectiveness of adversarial training and GANs for a variety of image
synthesis tasks [Isola et al. 2017; Ledig et al. 2016; Zhu et al. 2017],
including texture synthesis [Bergmann et al. 2017; Li and Wand
2016]. Thus, we also adopt an adversarial training approach to train
our generator. In other words, our generator G is trained alongside
with a discriminator D [Goodfellow et al. 2014]. The discriminator
D is trained to classify whether a 2k ⇥ 2k texture block is real (a
crop from the input exemplar) or fake (synthesized by G).
In our approach, a dedicated GAN must be trained for each in-

put exemplar, which takes considerable computational resources.
But once the fully-convolutional generator has been trained, large
texture blocks may be synthesized from smaller ones in a single

Fig. 4. Method overview. The generator learns to expand k ⇥ k texture
blocks into 2k ⇥ 2k ones using a combination of adversarial loss, L1 loss
and style loss.
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Fig. 5. Architecture of our generator and discriminator. The number of
feature channels and the spatial resolution of feature maps are respectively
specified on the top of and under each block, while the kernel sizes are
specified in the central yellow regions.

forward pass through the network, which is extremely fast when
the network runs on the GPU. The size of the k ⇥ k source blocks
that we use during the training stage should be chosen large enough
to capture the non-stationary behavior across the input exemplar.
On the other hand, it should be small enough relative to the size of
the exemplar, so that we can extract a su�cient number of di�erent
2k ⇥ 2k target blocks to train the network. In our current imple-
mentation we set k = 128, and our exemplars are typically of size
600 ⇥ 400.

Network architecture
As explained earlier, we would like to model the generator as a fully-
convolutional deep neural network. Using a fully-convolutional
network allows us to apply the generator to arbitrary-sized inputs
at test time, and reduces the number of parameters, compared to
networks with fully connected layers. Network depth is important
both for the expressive power of the generator, and for increasing the
receptive �eld of the network’s neurons. Since our goal is to capture
large-scale non-stationary behavior across the source texture block,
at some level of the network the receptive �eld should approach
the size of the source block. This may be e�ectively achieved by
introducing a chain of residual blocks [He et al. 2016].
A generator architecture that satis�es our requirements was, in

fact, already proposed by Johnson et al. [2016], who demonstrated
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resblock_1 resblock_2 resblock_3 resblock_4 resblock_5 resblock_6 convrelu

Fig. 6. Visualization of feature maps output by the middle part of our generator. Besides the intermediate results of residual blocks (from resblock_1 to
resblock_6) we also visualize the final output of encoding stage (relu), and the feature map output by the first convolution layer of the decoder (conv).
While the leaf (top), bricks (middle) and wood ring (bo�om) textures have very di�erent large-scale structures, it may be observed that all of the new structures
emerge in the course of the residual block chain. The creation of new structures is typically complete before the end of the chain, as evidenced by the similarity
between the resblock_5 and resblock_6 feature maps.

its e�ectiveness for neural style transfer and for super-resolution.
The same generator was later successfully used by Zhu et al. [2017]
for a variety of unpaired image-to-image translation tasks. Neural
style transfer is closely related to texture synthesis; thus, we adopt
a similar architecture for our generator.
The architecture of the generator is shown in the diagram in

Figure 5. The network consists of three convolution layers, two of
which use stride-2 convolutions that reduce the spatial dimensions
of the input. These three layers are followed by a sequence of six
residual blocks [He et al. 2016]. The receptive �eld of the neurons
at the end of the residual chain is 109 ⇥ 109, i.e., close to the size of
our training source blocks. From this point onward, we �rst double
the number of channels, after which the spatial dimensions are
doubled three times via strided deconvolution layers, yielding twice
the original spatial resolution. Finally, the multi-channel result of
this process is combined back into three image channels. Similarly
to previous work we use batch normalization after each convolution,
except the last one.

Figure 6 visualizes the feature maps output by the residual blocks
of our generator. Through this visualization, we can gain a better
understanding of how the generator works. The di�erent activa-
tion maps after the downsampling stages (relu) reveal that they
encode details at various scales and orientations. No new large scale
structures appear to be present yet. The situation is di�erent by
the end of the residual chain (resblock_6), where we can see that
the number of the large scale structures (leaf veins, bricks or wood
rings) has roughly doubled. Thus, the residual blocks appear to be
responsible for introducing new large scale structures. This makes
a lot of sense, since each residual block is capable of spatially trans-
forming its input (via its two convolution layers), and adding the
transformed result to its input. It appears that a chain of such blocks
is capable of learning which structures, among those present in the
chain’s input, should be replicated, and how the resulting replicas
should be spatially transformed before they are recombined with
the original pattern. For example, for the leaf texture, it is capable

of learning that the leaf vein structures should be shifted horizon-
tally after replication, while for the wood rings texture it learns
to shift the replicated rings radially. In either case, the amount of
large scale structure is roughly doubled. However, when a genera-
tor trained on a certain texture is applied to an input consisting of
completely di�erent structures, these structures are not replicated,
as demonstrated by the results in Figure 15.
While Johnson et al. [2016] employ a loss network, which is

used to compute the style loss and content loss functions of Gatys
et al. [2015b], we require a loss function with more sensitivity to
spatial arrangement of texture elements and their spatially variant
appearance. Thus, we adopt the PatchGAN discriminator [Isola et al.
2017; Ledig et al. 2016; Li and Wand 2016; Zhu et al. 2017] instead.
The discriminator architecture is shown in Figure 5 (bottom right).
This fully-convolutional network halves the spatial resolution of
the input four times, while doubling the number of channels. The
neurons at the sixth layer may be viewed as texture descriptors of
length 512, representing overlapping texture patches of size 142⇥142
in the input. Each of these 512-dimensional descriptors is then
projected into a scalar (using a 1 ⇥ 1 convolution, followed by a
sigmoid), and the resulting 2D pattern is classi�ed as real or fake
using binary cross-entropy.

Training procedure
Our training process follows the one outlined in the pioneering
work of Goodfellow et al. [2014]: we repeatedly alternate between
performing a single training iteration on the discriminator D, and
a single training iteration on the generator G. In each training
iteration, we randomly select one 256 ⇥ 256 target block T from
the exemplar to serve as the ground truth, as well as a random
128 ⇥ 128 source block S , contained in T , which is fed as input to
the generator. For maximum utilization of the available data we
choose to not set aside a validation or a test set. Nevertheless, our
results show that the network is able to plausibly expand unseen
input texture blocks that are di�erent in both size and content from
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Jetchev et al. [2016] also utilize GANs for texture synthesis, where
texture patches are generated from random noise, and patches of
the same size as the generated output are randomly selected from
the exemplar as the ground truth for adversarial training. However,
their method failed to produce high quality textures consistently.
Bergmann et al. [2017] extend this approach by introducing a pe-
riodic function into the input noise, which enables synthesizing
periodic textures with high quality. However, the approach, referred
to as PSGAN, is limited to periodic textures and thus is not applicable
to most real-world textures, as demonstrated in Figure 7.
Isola et al. [2016] demonstrate the e�ectiveness of GANs for

a variety of image-to-image translation tasks. Zhu et al. [2017]
introduce CycleGANs, where the translation network can be trained
with unpaired training data. In these tasks, the input and output
di�er in appearance, but correspond to di�erent renderings of the
same underlying structure. This is not the case in our approach,
where the goal is to extend the global structure of the exemplar.
We do so by introducing new instances of local patterns, which are
similar, but not identical, to those present in the exemplar.

3 OUR APPROACH
We begin this section with an overview of our approach, followed
by a more detailed explanation of the network architectures used
and the training procedure.

Our approach is very simple conceptually: given that our ultimate
goal is to generate larger instances that perceptually resemble a
smaller input texture exemplar, the main idea is to teach a fully
convolutional generator network how to do just that. The approach
is depicted by the diagram in Figure 4. More speci�cally, given a k⇥k
source block S cropped from the input exemplar, the generator must
learn to produce a 2k ⇥ 2k output, which is perceptually similar to
an enclosing target block T of the latter size. Note that this training
procedure is self-supervised: the ground truth extended texture
blocks are taken directly from the input texture. Since the generator
is a fully-convolutional network, once it has been trained, we can
apply it onto the entire input exemplar, or a su�ciently large portion
thereof, to generate a texture that is larger than the input (up to
double its size).
It is well known that pixel-based metrics, such as L1 or L2 are

not well suited for assessing the perceptual di�erences between
images. This is even more true when the goal is to compare di�erent
instances of the same texture, which are the output of texture syn-
thesis algorithms. On the other hand, recent work has shown the
e�ectiveness of adversarial training and GANs for a variety of image
synthesis tasks [Isola et al. 2017; Ledig et al. 2016; Zhu et al. 2017],
including texture synthesis [Bergmann et al. 2017; Li and Wand
2016]. Thus, we also adopt an adversarial training approach to train
our generator. In other words, our generator G is trained alongside
with a discriminator D [Goodfellow et al. 2014]. The discriminator
D is trained to classify whether a 2k ⇥ 2k texture block is real (a
crop from the input exemplar) or fake (synthesized by G).
In our approach, a dedicated GAN must be trained for each in-

put exemplar, which takes considerable computational resources.
But once the fully-convolutional generator has been trained, large
texture blocks may be synthesized from smaller ones in a single

Fig. 4. Method overview. The generator learns to expand k ⇥ k texture
blocks into 2k ⇥ 2k ones using a combination of adversarial loss, L1 loss
and style loss.
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Fig. 5. Architecture of our generator and discriminator. The number of
feature channels and the spatial resolution of feature maps are respectively
specified on the top of and under each block, while the kernel sizes are
specified in the central yellow regions.

forward pass through the network, which is extremely fast when
the network runs on the GPU. The size of the k ⇥ k source blocks
that we use during the training stage should be chosen large enough
to capture the non-stationary behavior across the input exemplar.
On the other hand, it should be small enough relative to the size of
the exemplar, so that we can extract a su�cient number of di�erent
2k ⇥ 2k target blocks to train the network. In our current imple-
mentation we set k = 128, and our exemplars are typically of size
600 ⇥ 400.

Network architecture
As explained earlier, we would like to model the generator as a fully-
convolutional deep neural network. Using a fully-convolutional
network allows us to apply the generator to arbitrary-sized inputs
at test time, and reduces the number of parameters, compared to
networks with fully connected layers. Network depth is important
both for the expressive power of the generator, and for increasing the
receptive �eld of the network’s neurons. Since our goal is to capture
large-scale non-stationary behavior across the source texture block,
at some level of the network the receptive �eld should approach
the size of the source block. This may be e�ectively achieved by
introducing a chain of residual blocks [He et al. 2016].
A generator architecture that satis�es our requirements was, in

fact, already proposed by Johnson et al. [2016], who demonstrated
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those encountered during training, and it is easy to see that it does
not merely memorize patterns. It is also capable of texture transfer,
as demonstrated in Figure 15.

In addition to the standard adversarial loss function [Goodfellow
et al. 2014] Ladv , we use two additional loss terms: L1 loss LL1 and
style loss Lstyle [Gatys et al. 2015a]:

Ltotal = Ladv + �1LL1 + �2Lstyle, (1)

where �1 = 100 and �2 = 1. As we shall demonstrate in our ablation
study in Section 4.3, the adversarial loss appears to be the main
workhorse, while the other two terms help stabilize the training and
slightly reduce artifacts.
Following Gatys et al. [2015a], we compute the style loss using

a pre-trained (on ImageNet) VGG-19 model, and compute Gram
matrices for the ReLU activated feature maps output by the relu1_1,
relu2_1, relu3_1, relu4_1, and relu5_1 layers. The weights used
to sum up the corresponding Gram losses are set to 0.244, 0.061,
0.015, 0.004, and 0.004, respectively. More speci�cally, they are given
by 1000/(64 x 64), 1000/(128 x 128), 1000/(256 x 256), 1000/(512 x
512), and 1000/(512 x 512).
We choose Adam [Kingma and Ba 2014] as our optimization

method with momentum set to 0.5, and train our models for up to
100,000 iterations. Learning rate is set to 0.0002 initially and kept
unchanged for the �rst 50,000 iterations. Then, the learning rate
linearly decays to zero over the remaining 50,000 iterations. Weights
of convolutional layers are initialized from a Gaussian distribution
with mean 0 and standard deviation 0.02. We train and test all our
models on an NVIDIA Titan Xp GPU with 12GB of GPU memory.

4 RESULTS
Our approach was implemented using PyTorch, building on pub-
licly available existing implementations of its various components.
Generators were trained for a variety of input exemplars of sizes
around 600⇥400 pixels. Training our GAN on an exemplar of this
size takes about 5 hours for 100,000 iterations on a PC equipped
with a NVIDIA Titan Xp GPU with 12GB memory. In many cases
the results no longer improve after around 36,000 iterations (under 2
hours). Our implementation, as well as our trained models and other
supplementary materials, are all available on the project page1.

Once the generator has been trained it takes only 4–5milliseconds
to double the size of a 600⇥400 texture, since this requires only a
single feed-forward pass through the generator.
A few of our synthesis results from challenging non-stationary

texture exemplars exhibiting irregular large-scale structures and in-
homogeneities are shown in Figures 1 and 2. In all of these examples,
the global structure present in the input exemplars is successfully
captured and extended by our method. Of course, our method is also
applicable to more stationary textures as well, including textures
with regular, near-regular, or stochastic structures. Four examples
of our results on such textures are shown in Figure 3. Results for
additional textures are included in the supplementary material.

1http://vcc.szu.edu.cn/research/2018/TexSyn

4.1 Comparison
Figure 7 compares our results with those produced by a number of
state-of-the-art methods. The �rst column shows the input exem-
plars, which include both non-stationary and stationary textures.
Our results are shown in the second column. The third column
shows results produced by self-tuning texture optimization [Kaspar
et al. 2015], which is a representative of classical optimization-based
texture synthesis methods. The next four columns show results
produced by several recent deep learning based approaches: Tex-
tureNets by Ulyanov et al. [2016], a feed-forward version of the
method proposed by Gatys et al. [2015a]; DeepCor by Sendik and
Cohen-Or [2017] improves upon Gatys et al.’s approach by intro-
ducing a deep correlations loss that enables better handling of large
scale regular structures; MGANs of Li and Wand [2016], the �rst
texture synthesis method to use adversarial training, employing a
discriminator that examines statistics of local patches; and PSGAN
of Bergmann et al. [2017], which learns to convert periodic noise
into texture patches sampled from the exemplar.

These comparisons demonstrate that our approach is able to han-
dle large-scale non-stationarity much better than existing methods,
while for stationary or homogeneous textures, we produce compara-
ble results to the state-of-the-art approaches. Additional comparison
results are contained in our supplementary materials.
In terms of computation times, the self-tuning method [Kaspar

et al. 2015] takes about 20 minutes per result; the deep learning
based methods take between 1 hour of training per exemplar with
TextureNets [Ulyanov et al. 2016], to 12 hours of training an PSGAN
[Bergmann et al. 2017], and up to 8 hours for each result using
Deep Correlations [Sendik and Cohen-Or 2017]. Thus, while the
training time of our method is much slower than the time it takes
to synthesize a single texture with a classical method, it is far from
being the slowest among the deep-learning based methods.

4.2 Diversification
It is important for a texture synthesis algorithm to be able to produce
a diverse collection of results from a single input exemplar. Since our
method does not generate textures from a random seed or noise, we
have explored a number of alternatives for diversifying the output.
The simplest approach is to simply feed di�erent subwindows of
the exemplar as input to be expanded by our generator. Since the
appearance across non-stationary exemplars varies greatly, crop-
ping and expanding di�erent windows may result in quite di�erent
results. This is demonstrated in Figure 8, which shows two di�erent
512⇥512 synthesis results for each exemplar, obtained by taking two
random 256⇥256 crops as input.

For exemplars with a more stochastic and stationary nature, with-
out a clear global structure, it is also possible to diversify the results
by reshu�ing or perturbing the source texture. Speci�cally, for suf-
�ciently stationary textures, we have been able to produce a wide
variety of synthesis results by reshu�ing the exemplar’s content.
Figure 9 shows three exemplars, each of which was split into 4⇥4
tiles, which were randomly reshu�ed each time before feeding into
the generator to yield di�erent results. We have also experimented
with adding Perlin noise to both stationary and non-stationary exem-
plars. We found that the changes among di�erent results generated
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Input Our Result Self-tuning TextureNets DeepCor MGANs PSGAN

Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].
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Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.



Experiments

➤ both non-stationary and stationary textures 

!22

Non-Stationary Texture Synthesis by Adversarial Expansion • 49:7

Input Our Result Self-tuning TextureNets DeepCor MGANs PSGAN

Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.

Non-Stationary Texture Synthesis by Adversarial Expansion • 49:7

Input Our Result Self-tuning TextureNets DeepCor MGANs PSGAN

Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.



Experiments

➤ both non-stationary and stationary textures 

!23

Non-Stationary Texture Synthesis by Adversarial Expansion • 49:7

Input Our Result Self-tuning TextureNets DeepCor MGANs PSGAN

Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.

Non-Stationary Texture Synthesis by Adversarial Expansion • 49:7

Input Our Result Self-tuning TextureNets DeepCor MGANs PSGAN

Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from le� to right are respectively produced by our
method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.

20 min 1 hour 12 hour8 hour5 hour



Experiments

➤ Diversification 
➤ Taking two random crops as input. 

!24

49:8 • Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang

Fig. 8. Diversification by cropping. For each source texture (le� in each triplet), we randomly crop two 256⇥256 sub-regions from the source texture a�er
training, to generate di�erent expansion results on size 512⇥512.

Fig. 9. Diversification by tile shu�ling. The exemplar used to train the generator (le�most column) is divided into tiles, which are randomly reshu�led before
feeding into the generator, yielding di�erent results.

in this manner are more moderate, and are best presented using
animated sequences; we include a number of such animations in
our supplementary materials.

4.3 Self evaluation
Ablation study. Figure 10 shows the results of an ablation study

that we carried out in order to verify the importance of the various
loss terms in Equation 1. We �rst train the generator with the adver-
sarial loss switched o�, i.e., without adversarial training. In this case,
the generator fails to properly expand the input texture: no new
large scale structures are introduced in the leaf example, and the

smaller scale structures are not reproduced faithfully. Next, we turn
on adversarial training and experiment with di�erent combinations
of the other two loss terms, including: adversarial loss only, adversar-
ial and L1 loss, adversarial and style loss, and the combination of all
three terms. The visual di�erences between results achieved using
these di�erent combinations are quite subtle. Clearly, the adversarial
loss plays a key role in our approach, as it alone already produces
good results. Nevertheless, some noise and artifacts are present,
which are reduced by adding the L1 loss. However, this also causes
oversmoothing of local details in some areas. In contrast, style loss
enhances details, but at the same time introduces artifacts into the
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Fig. 10. Ablation study on two textures shown in Figure 2. The le�most column shows the expansion results without adversarial training, and the remaining
columns show results of using di�erent combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
middle row, while the top & bo�om rows zoom into the blue and red framed windows indicated in the middle row. For high-resolution full image results,
please refer to our supplementary materials.

16⇥16 34⇥34 70⇥70 142⇥142 286⇥286 574⇥574

Fig. 11. Comparison of PatchGANs with di�erent receptive fields, ranging from 16⇥16 to 574⇥574, corresponding to 3 to 8 convolutional layers in the
discriminator. Adding layers increases the receptive field (i.e., the patch size) of PatchGAN, which makes it possible for the discriminator to examine larger
structures. However, as may be seen above, very large patch sizes seem to cause the discriminator to pay less a�ention to local details. We use a patch size of
142⇥142 in our results.

structures and causes some color distortions. The combination of
all three terms, yields the best results, in our experience.

Discriminator patch size. The PatchGAN discriminator used in our
approach is fully convolutional. Thus, it can be adjusted to examine
texture patches of di�erent sizes by changing the number of its
resolution-reducing convolutional levels. We experimented with
PatchGANs of six di�erent sizes (ranging from 16 to 574). Results
for two textures are shown in Figure 11. Our results on these and
other textures consistently indicate that the best texture expansions
are obtained using a 142⇥142 PatchGAN.

Synthesis stability. Kaspar et al. [2015] proposed an interesting
stress test to evaluate the stability of a synthesis algorithm, which
consists of feeding an algorithm with its own output as the input
exemplar. Since our approach doubles the size of its input at every
stage, we conducted a modi�ed version of this test, where after each
synthesis result is obtained, we randomly crop from the result a
block of the same size as the original input and feed it back to our
method. Note that we keep applying the same generator, without
any re-training or �ne-tuning. Figure 12 shows the results of �ve
synthesis generations on two textures. Obviously, since in this pro-
cess we essentially zoom-in on a portion of the original texture, the

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.
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all three terms, yields the best results, in our experience.
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approach is fully convolutional. Thus, it can be adjusted to examine
texture patches of di�erent sizes by changing the number of its
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PatchGANs of six di�erent sizes (ranging from 16 to 574). Results
for two textures are shown in Figure 11. Our results on these and
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are obtained using a 142⇥142 PatchGAN.
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stress test to evaluate the stability of a synthesis algorithm, which
consists of feeding an algorithm with its own output as the input
exemplar. Since our approach doubles the size of its input at every
stage, we conducted a modi�ed version of this test, where after each
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block of the same size as the original input and feed it back to our
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columns show results of using di�erent combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
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Fig. 10. Ablation study on two textures shown in Figure 2. The le�most column shows the expansion results without adversarial training, and the remaining
columns show results of using di�erent combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
middle row, while the top & bo�om rows zoom into the blue and red framed windows indicated in the middle row. For high-resolution full image results,
please refer to our supplementary materials.
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142⇥142 in our results.
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Fig. 10. Ablation study on two textures shown in Figure 2. The le�most column shows the expansion results without adversarial training, and the remaining
columns show results of using di�erent combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
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stage, we conducted a modi�ed version of this test, where after each
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Fig. 10. Ablation study on two textures shown in Figure 2. The le�most column shows the expansion results without adversarial training, and the remaining
columns show results of using di�erent combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
middle row, while the top & bo�om rows zoom into the blue and red framed windows indicated in the middle row. For high-resolution full image results,
please refer to our supplementary materials.
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discriminator. Adding layers increases the receptive field (i.e., the patch size) of PatchGAN, which makes it possible for the discriminator to examine larger
structures. However, as may be seen above, very large patch sizes seem to cause the discriminator to pay less a�ention to local details. We use a patch size of
142⇥142 in our results.
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exemplar. Since our approach doubles the size of its input at every
stage, we conducted a modi�ed version of this test, where after each
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method. Note that we keep applying the same generator, without
any re-training or �ne-tuning. Figure 12 shows the results of �ve
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cess we essentially zoom-in on a portion of the original texture, the

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.



➤ Synthesis stability  
➤ Randomly crop the result and feed it as input again, repeated 4 times, 

without any re-training or fine-tuning the generator. 

➤ The final result (rightmost column) is still very sharp and natural 
looking.
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Fig. 12. Stress test #1. Given a source texture (le�most column), we double its size using our method. Then we randomly crop a region of the same size as the
source texture from the expansion result, and expand it again without any further training. The above crop-expansion cycle is repeated 4 times. We can see
that the final result (rightmost column) is still very sharp and natural looking, a�esting to the stability of our method.

Fig. 13. Extreme expansion. Having trained a generator on the source exemplar (le�), we feed it with a small cropped texture block (64⇥64 pixels), and feed
the expanded result back into the generator. Five such cycles produce a 2048⇥2048 result. Six di�erent crops from this result are shown in the bo�om row.

global structure changes accordingly. However, it may be seen that
the smaller scale texture elements remain sharp and faithful to their
shapes in the original exemplar.

Extreme expansion. Given that our method can expand the source
texture up to twice its size, by repeating the expansion one can
synthesize very large results. Figure 14 shows the result of expanding

thewood rings exemplar by a factor of four (by expanding oncemore
the result shown in Figure 1 using the same trained model). The
result successfully maintains the radial structure of the wood rings.
Figure 13 shows a more extreme expansion result, where starting
from a 64⇥64 patch, it is expanded to x32 of its original size via �ve
expansion cycles. All of the cycles use the same model trained on the
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Fig. 12. Stress test #1. Given a source texture (le�most column), we double its size using our method. Then we randomly crop a region of the same size as the
source texture from the expansion result, and expand it again without any further training. The above crop-expansion cycle is repeated 4 times. We can see
that the final result (rightmost column) is still very sharp and natural looking, a�esting to the stability of our method.
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Fig. 13. Extreme expansion. Having trained a generator on the source exemplar (le�), we feed it with a small cropped texture block (64⇥64 pixels), and feed
the expanded result back into the generator. Five such cycles produce a 2048⇥2048 result. Six di�erent crops from this result are shown in the bo�om row.
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expansion cycles. All of the cycles use the same model trained on the
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➤ Not suited for artistic style transfer 
➤ How to transfer: feeding the guiding image as input to a trained generator 
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Fig. 15. Texture transfer. By feeding generators trained using the texture exemplars in the top row with guiding images in the le�most column we synthesize
textures that adapt to the large scale structures present in the guiding images. Note that we can even input a simple user sketch or pure random noise (Perlin
noise) and generate satisfactory results as shown in the last two rows.

attributed to fewer training examples in these areas, and possibly
also related to the padding performed by the convolution layers.
Figure 17 shows two failure cases of our method. These failures

may still be attributed to limited training examples. For example,
for the stone tiles texture, all the tiles are quite large and distinct. So
is the singularity at the center of the sun�ower texture. In general,
if the generator has not seen enough examples of a particular large
scale structure or pattern during training, it cannot be expected to
correctly reproduce and/or extend such structures during test time.

The network does not learn some kind of a high-level representation
of the texture; it only learns how to extend commonly occurring
patterns. In the future, we would like to address this issue. It might
be facilitated by training on multiple textures of the same class.
With richer data we may possibly train a more powerful model for
generalized texture synthesis tasks.
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➤ Limitation
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Fig. 16. Artifacts in the border and corner regions.

Fig. 17. Failure cases of our method. For the stone tiles texture, our method
failed to learn its large scale structure (le�). While for the sunflower, our
method failed to reproduce the singularity at the center (right).
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