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BACKGROUND

» Generative Adversarial Network (GAN)

The evolution of generation
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BACKGROUND

» To improve GAN:
« Designing New Network Architectures

« Example: Progressive Growing (ICLR18)
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- Progressive growing of gans for improved quality,stability, and variation 0



BACKGROUND

» To improve GAN:

« Modifying the Learning Objectives and Dynamics
- Example: EBGAN (ICLR17)
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Figure 1: EBGAN architecture.

- Energy-based generative adversarial network .



BACKGROUND

» To improve GAN:

 Introducing Heuristic Tricks

« Example: ACGAN (ICLR17)
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- Conditional image synthesis with auxiliary classifier gans e



BACKGROUND

» To improve GAN:

« Adding Regularization Methods
» Example: WGAN-GP (NIPS17)
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- Improved training of wasserstein gans 13
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METHOD

» Self-Attention

» Spectral Norm

» TTUR
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METHOD

» Previous Methods:
» Good at classes with few structural constraints, e.g. ocean, sky

» Fails to capture geometric or structural patterns (dogs are with
realistic fur texture but without clearly defined separate feet)

» (Causes:
> receptive fields grow slowly
— need deeper architecture — computational efficiency
» optimization algorithms not good enough
— cannot discover parameter values that carefully coordinate

multiple layers to capture these dependencies
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METHOD

> Self-Attention:
» Well-used in NLP.
» Image transformer (ICLR18) use it for image generation.

» Non-local neural networks (CVPR18) proposed a non-local
operation for video recognition.

» Has not yet been explored in the context of GANS.
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METHOD

» Self-Attention:

> Better balance long-range reception and efficiency

« Using features in distant portions of the image rather than
local regions of fixed shape

« With only a small computational cost.
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METHOD

» Self-Attention:
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METHOD

» Self-Attention:
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METHOD

» Self-Attention:
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METHOD

» Self-Attention:
» Final Output: ¥Y; = YO; + X4, v is initialized as 0
e The network first relies on local neighborhood

e Then gradually learn to use the non-local evidence
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METHOD

» Self-Attention:

» Non-local neural networks (CVPR18) proposed a non-local
operation for video recognition.
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METHOD

» Self-Attention

» Spectral Norm

» TTUR
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METHOD

» SNGAN(ICLR18) only uses spectral normalization on netD

» This paper use it for both netG and netD

» Benefit: fewer netD updates per netG updates

- Spectral normalization for generative adversarial networks (ICLR18) o



METHOD

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Spectral Norm
» limit spectral norm of the weight matrices in the netD

— to constrain the Lipschitz constant of the netD

> By definition, Lipschitz norm ||g||rip = sup;, 0(Vg(h))

|Ah||;
o(A) := max = max |[Ah||s,
4 h:h70 ||h]|2 ||h||2§1H I

<A which is equivalent to the largest singular value of A

- Spectral normalization for generative adversarial networks (ICLR18) o



METHOD

» Spectral Norm
» limit spectral norm of the weight matrices in the netD

— to constrain the Lipschitz constant of the netD

> By definition, Lipschitz norm ||g||rip = sup;, 0(Vg(h))

|Ah|]2
o(A) := max = max |[Ah||s,
4 h:h70 ||h]|2 ||h||2§1H I

<A which is equivalent to the largest singular value of A

> for a linear layer g(h) = Wh,
|9llLip = supp 0(Vg(h)) = supy, o(W) = o(W).

- Spectral normalization for generative adversarial networks (ICLR18) .



METHOD

» Spectral Norm
» limit spectral norm of the weight matrices in the netD

— to constrain the Lipschitz constant of the netD

> By definition, Lipschitz norm ||g||rip = sup;, 0(Vg(h))

|Ah|]2
o(A) := max = max |[Ah||s,
4 h:h70 ||h]|2 ||h||2§1H I

<A which is equivalent to the largest singular value of A

> for a linear layer g(h) = Wh, norm it to 1
I9llLip = supp, 0(Vg(h)) = supy, o(W) =|o(W).

- Spectral normalization for generative adversarial networks (ICLR18)
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METHOD

» Spectral Norm
> Benefit:
» Fewer netD updates per netG updates

» Does not require extra hyper-parameter tuning

- Spectral normalization for generative adversarial networks (ICLR18) -



METHOD

» Self-Attention

» Spectral Norm

» TTUR
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METHOD

» Two-Timescale Update Rule (TTUR)
» Learning rate of netD : netG = 4:1 (0.0004 and 0.0001)

» Benefit: fewer netD updates per netG updates

- Gans trained by a two time-scale update rule converge to a local nash equilibrium (NIPS17) .
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EVALUATION METRICS

» Inception score IS(P,) = cEx~pg [K L(pM(yIX)IlpM(y))],

« KL divergence between the conditional class distribution
and the marginal class distribution

« Higher the better

 cannot assess realism of details or intra-class diversity
> FID FID(P,,Py) = ||lur — pigll + Tr(C; + Cy — 2(CCy)'/?),

« Wasserstein-2 distance in the feature of an Inception-v3.

« Lower the better
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NETWORK STRUCGTURES

» Resolution: 128 X128
> netG:
Block — Block — Block — SA — Block — SA — Last
Block: DeConv - Spectral Norm - BN - ReLU
Last: DeConv - Tanh
» netD:
Block — Block — Block — SA — Block — SA — Last
Block: Conv - Spectral Norm - LeakyReLU

Last: Conv
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SN AND T'TUR
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SELEF AI'TENTION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» self-attention mechanism:

> better at the middle-to-high level feature maps (e.g., feat32
and feat64) than at the low level feature maps (e.g., feat8 and
featl6).

no SAGAN Residual
Model | ,ttention
feats | featis | featse | featss | feats | featis | featse | featgs
FID 22.96 2298 | 22.14 18.28 18.65 | 42.13 22.40 27.33 28.82
IS 42.87 43,15 | 45.94 51.43 52.52 | 23.17 | 44.49 38.50 38.96

Table 1: Comparison of Self-Attention and Residual block on GANs. These blocks are added into
different layers of the network. All models have been trained for one million iterations, and the best

Inception scores (IS) and Fréchet Inception distance (FID) are reported.




SELEF AI'TENTION

Figure 5: Visualization of attention maps. These images were generated by SAGAN. We visualize
the attention maps of the last generator layer that used attention, since this layer is the closest to the
output pixels and 1s the most straightforward to project into pixel space and interpret. In each cell, the
first image shows three representative query locations with color coded dots. The other three images
are attention maps for those query locations, with corresponding color coded arrows summarizing
the most-attended regions. We observe that the network learns to allocate attention according to
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COMPARATIVE RESULTS

Model Inception Score | FID
AC-GAN [31] 28.5 /
SNGAN-projection [17] 36.8 277.62*
SAGAN 52.52 18.65

Table 2: Comparison of the proposed SAGAN with state-of-the-art GAN models [19, 17] for class

conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially
released weights.
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DISCUSSION AND CONCLUSION

» Self-Attention — better global structure, higher score

» Spectral Norm .
— stability
» TTUR
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DISCUSSION AND CONCLUSION

> BigGAN uses SAGAN as Baseline:

Batch | Ch. | Param (M) | Shared | Hier. | Ortho. Itr x10° FID IS

256 64 81.5 SA-GAN Baseline 1000 18.65 52.52
512 64 81.5 X X X 1000 15.30 58.77(£1.18)
1024 | 64 81.5 X X X 1000 14.88 63.03(+1.42)
2048 64 81.5 X X X 732 12.39 76.85(+£3.83)
2048 96 173.5 X X X 295(£18) | 9.54(+£0.62) | 92.98(+4.27)
2048 96 160.6 v X X 185(£11) | 9.18(40.13) | 94.94(+1.32)
2048 96 158.3 v v X 152(+7) 8.73(+0.45) | 98.76(+2.84)
2048 96 158.3 v v v 165(+13) | 8.51(4+0.32) | 99.31(+£2.10)
2048 64 71.3 v v v 371(£7) 10.48(+0.10) | 86.90(+£0.61)
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