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BACKGROUND

➤ Generative Adversarial Network (GAN)
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BACKGROUND

➤ To improve GAN: 

• Designing New Network Architectures 

• Example: Progressive Growing (ICLR18)
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- Progressive growing of  gans for improved quality,stability, and variation



BACKGROUND

➤ To improve GAN: 

• Modifying the Learning Objectives and Dynamics 

• Example: EBGAN (ICLR17)

!11- Energy-based generative adversarial network
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➤ To improve GAN: 

• Introducing Heuristic Tricks 

• Example: ACGAN (ICLR17)

!12- Conditional image synthesis with auxiliary classifier gans
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➤ To improve GAN: 

• Adding Regularization Methods 

• Example: WGAN-GP (NIPS17)

!13- Improved training of  wasserstein gans
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METHOD

➤ Previous Methods� 

➤ Good at classes with few structural constraints, e.g. ocean, sky 

➤ Fails to capture geometric or structural patterns (dogs are with 
realistic fur texture but without clearly defined separate feet)  

➤ Causes� 

➤ receptive fields grow slowly 

→ need deeper architecture → computational efficiency 

➤ optimization algorithms not good enough 

→ cannot discover parameter values that carefully coordinate 
multiple layers to capture these dependencies
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METHOD

➤ Self-Attention: 

➤ Well-used in NLP. 

➤ Image transformer (ICLR18) use it for image generation. 

➤ Non-local neural networks (CVPR18) proposed a non-local 
operation for video recognition. 

➤ Has not yet been explored in the context of GANs.
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METHOD

➤ Self-Attention: 

➤ Better balance long-range reception and efficiency 

• Using features in distant portions of the image rather than 
local regions of fixed shape 

• With only a small computational cost. 
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Figure 1: The proposed SAGAN generates images by leveraging complementary features in distant
portions of the image rather than local regions of fixed shape to generate consistent objects/scenarios.
In each row, the first image shows five representative query locations with color coded dots. The
other five images are attention maps for those query locations, with corresponding color coded arrows
summarizing the most-attended regions.

In this work, we propose Self-Attention Generative Adversarial Networks (SAGANs), which in-
troduce a self-attention mechanism into convolutional GANs. The self-attention module is com-
plementary to convolutions and helps with modeling long range, multi-level dependencies across
image regions. Armed with self-attention, the generator can draw images in which fine details at
every location are carefully coordinated with fine details in distant portions of the image. Moreover,
the discriminator can also more accurately enforce complicated geometric constraints on the global
image structure.

In addition to self-attention, we also incorporate recent insights relating network conditioning to
GAN performance. [18] showed that well-conditioned generators tend to perform better. We propose
enforcing good conditioning of GAN generators using the spectral normalization technique that has
previously been applied only to the discriminator [16].

We have conducted extensive experiments on the ImageNet dataset to validate the effectiveness of the
proposed self-attention mechanism and stabilization techniques. SAGAN significantly outperforms
the state of the art in image synthesis by boosting the best reported Inception score from 36.8 to
52.52 and reducing Fréchet Inception distance from 27.62 to 18.65. Visualization of the attention
layers shows that the generator leverages neighborhoods that correspond to object shapes rather than
local regions of fixed shape.

2 Related Work

Generative Adversarial Networks. GANs have achieved great success in various image generation
tasks, including image-to-image translation [9, 40, 29, 14], image super-resolution [12, 28] and text-
to-image synthesis [24, 23, 37]. Despite this success, the training of GANs is known to be unstable
and sensitive to the choices of hyper-parameters. Several works have attempted to stabilize the GAN
training dynamics and improve the sample diversity by designing new network architectures [22,
37, 10], modifying the learning objectives and dynamics [1, 27, 15, 3, 39], adding regularization
methods [7, 16] and introducing heuristic tricks [26, 19]. Recently, Miyato et al. [16] proposed
limiting the spectral norm of the weight matrices in the discriminator in order to constrain the Lipschitz
constant of the discriminator function. Combined with the projection-based discriminator [17], the
spectrally normalized model greatly improves class-conditional image generation on ImageNet.

Attention Models. Recently, attention mechanisms have become an integral part of models that
must capture global dependencies [2, 34, 36, 6]. In particular, self-attention [4, 20], also called
intra-attention, calculates the response at a position in a sequence by attending to all positions within
the same sequence. Vaswani et al. [32] demonstrated that machine translation models could achieve
state-of-the-art results by solely using a self-attention model. Parmar et al. [21] proposed an Image
Transformer model to add self-attention into an autoregressive model for image generation. Wang et
al. [33] formalized self-attention as a non-local operation to model the spatial-temporal dependencies
in video sequences. In spite of this progress, self-attention has not yet been explored in the context
of GANs. (AttnGAN [35] uses attention over word embeddings within an input sequence, but
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➤ Self-Attention: 
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Figure 2: The proposed self-attention mechanism. The ⌦ denotes matrix multiplication. The softmax
operation is performed on each row.

not self-attention over internal model states). SAGAN learns to efficiently find global, long-range
dependencies within internal representations of images.

3 Self-Attention Generative Adversarial Networks
Most GAN-based models [22, 26, 10] for image generation are built using convolutional layers.
Convolution processes the information in a local neighborhood, thus using convolutional layers alone
is computationally inefficient for modeling long-range dependencies in images. In this section, we
adapt the non-local model of [33] to introduce self-attention to the GAN framework, enabling both
the generator and the discriminator to efficiently model relationships between widely separated spatial
regions.

The image features from the previous hidden layer x 2 RC⇥N are first transformed into two feature
spaces f , g to calculate the attention, where f(x) = Wfx, g(x) = Wgx

�j,i =
exp(sij)PN
i=1 exp(sij)

,where sij = f(xi)
Tg(xj), (1)

and �j,i indicates the extent to which the model attends to the ith location when synthesizing the jth

region. Then the output of the attention layer is o = (o1,o2, ...,oj , ...,oN ) 2 RC⇥N , where,

oj =
NX

i=1

�j,ih(xi),where h(xi) = Whxi. (2)

In the above formulation, Wg 2 RC̄⇥C , Wf 2 RC̄⇥C , Wh 2 RC⇥C are the learned weight
matrices, which are implemented as 1⇥1 convolutions. We use C̄ = C/8 in all our experiments.

In addition, we further multiply the output of the attention layer by a scale parameter and add back
the input feature map. Therefore, the final output is given by,

yi = �oi + xi, (3)

where � is initialized as 0. This allows the network to first rely on the cues in the local neighborhood
– since this is easier – and then gradually learn to assign more weight to the non-local evidence.
The intuition for why we do this is straightforward: we want to learn the easy task first and then
progressively increase the complexity of the task. In SAGAN, the proposed attention module has
been applied to both generator and discriminator, which are trained in an alternating fashion by
minimizing the hinge version of the adversarial loss [13, 30, 16],

LD = �E(x,y)⇠pdata
[min(0,�1 +D(x, y))] � Ez⇠pz,y⇠pdata [min(0,�1�D(G(z), y))],

LG = �Ez⇠pz,y⇠pdataD(G(z), y),
(4)
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Figure 2: The proposed self-attention mechanism. The ⌦ denotes matrix multiplication. The softmax
operation is performed on each row.
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is computationally inefficient for modeling long-range dependencies in images. In this section, we
adapt the non-local model of [33] to introduce self-attention to the GAN framework, enabling both
the generator and the discriminator to efficiently model relationships between widely separated spatial
regions.

The image features from the previous hidden layer x 2 RC⇥N are first transformed into two feature
spaces f , g to calculate the attention, where f(x) = Wfx, g(x) = Wgx

�j,i =
exp(sij)PN
i=1 exp(sij)

,where sij = f(xi)
Tg(xj), (1)

and �j,i indicates the extent to which the model attends to the ith location when synthesizing the jth

region. Then the output of the attention layer is o = (o1,o2, ...,oj , ...,oN ) 2 RC⇥N , where,

oj =
NX

i=1

�j,ih(xi),where h(xi) = Whxi. (2)

In the above formulation, Wg 2 RC̄⇥C , Wf 2 RC̄⇥C , Wh 2 RC⇥C are the learned weight
matrices, which are implemented as 1⇥1 convolutions. We use C̄ = C/8 in all our experiments.

In addition, we further multiply the output of the attention layer by a scale parameter and add back
the input feature map. Therefore, the final output is given by,

yi = �oi + xi, (3)

where � is initialized as 0. This allows the network to first rely on the cues in the local neighborhood
– since this is easier – and then gradually learn to assign more weight to the non-local evidence.
The intuition for why we do this is straightforward: we want to learn the easy task first and then
progressively increase the complexity of the task. In SAGAN, the proposed attention module has
been applied to both generator and discriminator, which are trained in an alternating fashion by
minimizing the hinge version of the adversarial loss [13, 30, 16],

LD = �E(x,y)⇠pdata
[min(0,�1 +D(x, y))] � Ez⇠pz,y⇠pdata [min(0,�1�D(G(z), y))],

LG = �Ez⇠pz,y⇠pdataD(G(z), y),
(4)
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where we mean by kfkLip the smallest value M such that kf(x)� f(x0)k/kx� x0k  M for any
x,x0, with the norm being the `2 norm.

While input based regularizations allow for relatively easy formulations based on samples, they also
suffer from the fact that, they cannot impose regularization on the space outside of the supports of
the generator and data distributions without introducing somewhat heuristic means. A method we
would introduce in this paper, called spectral normalization, is a method that aims to skirt this issue
by normalizing the weight matrices using the technique devised by Yoshida & Miyato (2017).

2.1 SPECTRAL NORMALIZATION

Our spectral normalization controls the Lipschitz constant of the discriminator function f by literally
constraining the spectral norm of each layer g : hin 7! hout. By definition, Lipschitz norm kgkLip
is equal to suph �(rg(h)), where �(A) is the spectral norm of the matrix A (L2 matrix norm of A)

�(A) := max
h:h6=0

kAhk2
khk2

= max
khk21

kAhk2, (6)

which is equivalent to the largest singular value of A. Therefore, for a linear layer g(h) = Wh, the
norm is given by kgkLip = suph �(rg(h)) = suph �(W ) = �(W ). If the Lipschitz norm of the
activation function kalkLip is equal to 1 1, we can use the inequality kg1�g2kLip  kg1kLip ·kg2kLip
to observe the following bound on kfkLip:

kfkLip k(hL 7! WL+1hL)kLip · kaLkLip · k(hL�1 7! WLhL�1)kLip

· · · ka1kLip · k(h0 7! W 1h0)kLip =
L+1Y

l=1

k(hl�1 7! W lhl�1)kLip =
L+1Y

l=1

�(W l). (7)

Our spectral normalization normalizes the spectral norm of the weight matrix W so that it satisfies
the Lipschitz constraint �(W ) = 1:

W̄SN(W ) := W/�(W ). (8)

If we normalize each W l using (8), we can appeal to the inequality (7) and the fact that
�
�
W̄SN(W )

�
= 1 to see that kfkLip is bounded from above by 1.

Here, we would like to emphasize the difference between our spectral normalization and spectral
norm ”regularization” introduced by Yoshida & Miyato (2017). Unlike our method, spectral norm
”regularization” penalizes the spectral norm by adding explicit regularization term to the objective
function. Their method is fundamentally different from our method in that they do not make an
attempt to ‘set’ the spectral norm to a designated value. Moreover, when we reorganize the derivative
of our normalized cost function and rewrite our objective function (12), we see that our method
is augmenting the cost function with a sample data dependent regularization function. Spectral
norm regularization, on the other hand, imposes sample data independent regularization on the cost
function, just like L2 regularization and Lasso.

2.2 FAST APPROXIMATION OF THE SPECTRAL NORM �(W )

As we mentioned above, the spectral norm �(W ) that we use to regularize each layer of the dis-
criminator is the largest singular value of W . If we naively apply singular value decomposition
to compute the �(W ) at each round of the algorithm, the algorithm can become computationally
heavy. Instead, we can use the power iteration method to estimate �(W ) (Golub & Van der Vorst,
2000; Yoshida & Miyato, 2017). With power iteration method, we can estimate the spectral norm
with very small additional computational time relative to the full computational cost of the vanilla
GANs. Please see Appendix A for the detail method and Algorithm 1 for the summary of the actual
spectral normalization algorithm.

1For examples, ReLU (Jarrett et al., 2009; Nair & Hinton, 2010; Glorot et al., 2011) and leaky ReLU (Maas
et al., 2013) satisfies the condition, and many popular activation functions satisfy K-Lipschitz constraint for
some predefined K as well.
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Here, we would like to emphasize the difference between our spectral normalization and spectral
norm ”regularization” introduced by Yoshida & Miyato (2017). Unlike our method, spectral norm
”regularization” penalizes the spectral norm by adding explicit regularization term to the objective
function. Their method is fundamentally different from our method in that they do not make an
attempt to ‘set’ the spectral norm to a designated value. Moreover, when we reorganize the derivative
of our normalized cost function and rewrite our objective function (12), we see that our method
is augmenting the cost function with a sample data dependent regularization function. Spectral
norm regularization, on the other hand, imposes sample data independent regularization on the cost
function, just like L2 regularization and Lasso.

2.2 FAST APPROXIMATION OF THE SPECTRAL NORM �(W )
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with very small additional computational time relative to the full computational cost of the vanilla
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1For examples, ReLU (Jarrett et al., 2009; Nair & Hinton, 2010; Glorot et al., 2011) and leaky ReLU (Maas
et al., 2013) satisfies the condition, and many popular activation functions satisfy K-Lipschitz constraint for
some predefined K as well.
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METHOD
➤ Spectral Norm  

➤ Benefit:  

➤ Fewer netD updates per netG updates 

➤ Does not require extra hyper-parameter tuning 

!29- Spectral normalization for generative adversarial networks (ICLR18)



METHOD

➤ Self-Attention 

➤ Spectral Norm 
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METHOD

➤ Two-Timescale Update Rule (TTUR) 

➤ Learning rate of netD : netG = 4:1 (0.0004 and 0.0001) 

➤ Benefit: fewer netD updates per netG updates

!31- Gans trained by a two time-scale update rule converge to a local nash equilibrium (NIPS17)
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EVALUATION METRICS 

➤ Inception score 

• KL divergence between the conditional class distribution 
and the marginal class distribution 

• Higher the better 

• cannot assess realism of details or intra-class diversity 

➤ FID 

• Wasserstein-2 distance in the feature of an Inception-v3.  

• Lower the better
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NETWORK STRUCTURES 

➤ Resolution: 128×128 

➤ netG: 

     Block → Block → Block → SA → Block → SA → Last 

 Block: DeConv - Spectral Norm - BN - ReLU 

 Last:   DeConv - Tanh 

➤ netD: 

     Block → Block → Block → SA → Block → SA → Last 

 Block: Conv - Spectral Norm - LeakyReLU 

 Last:   Conv
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SN AND TTUR

!35Figure 3: Training curves for the baseline model and our models with the proposed stabilization
techniques, “SN on G/D” and two-timescale learning rates (TTUR). All models are trained with 1:1
balanced updates for G and D.

Model
no

attention
SAGAN Residual

feat8 feat16 feat32 feat64 feat8 feat16 feat32 feat64

FID 22.96 22.98 22.14 18.28 18.65 42.13 22.40 27.33 28.82

IS 42.87 43.15 45.94 51.43 52.52 23.17 44.49 38.50 38.96

Table 1: Comparison of Self-Attention and Residual block on GANs. These blocks are added into
different layers of the network. All models have been trained for one million iterations, and the best
Inception scores (IS) and Fréchet Inception distance (FID) are reported.

5.1 Evaluating the proposed stabilization techniques.
In this section, experiments are conducted to evaluate the effectiveness of the proposed stabilization
techniques, i.e., applying spectral normalization (SN) to the generator and utilizing imbalanced
learning rates (TTUR). In Figure 3, our models “SN on G/D” and “SN on G/D+TTUR” are
compared with a baseline model, which is implemented based on the state-of-the-art image generation
method [16]. In this baseline model, SN is only utilized in the discriminator. When we train it with
1:1 balanced updates for the discriminator (D) and the generator (G), the training becomes very
unstable, as shown in the leftmost sub-figures of Figure 3. It exhibits mode collapse very early in
training. For example, the top-left sub-figure of Figure 4 illustrates some images randomly generated
by the baseline model at the 10k-th iteration. Although in the the original paper [16] this unstable
training behavior is greatly mitigated by using 5:1 imbalanced updates for D and G, the ability to
be stably trained with 1:1 balanced updates is desirable for improving the convergence speed of the
model. Thus, using our proposed techniques means that the model can produce better results given
the same wall-clock time. Given this, there is no need to search for a suitable update ratio for the
generator and discriminator. As shown in the middle sub-figures of Figure 3, adding SN to both
the generator and the discriminator greatly stabilized our model “SN on G/D”, even when it was
trained with 1:1 balanced updates. However, the quality of samples does not improve monotonically
during training. For example, the image quality as measured by FID and IS is starting to drop at
the 260k-th iteration. Example images randomly generated by this model at different iterations can
be found in Figure 4. When we also apply the imbalanced learning rates to train the discriminator
and the generator, the quality of images generated by our model “SN on G/D+TTUR” improves
monotonically during the whole training process. As shown in Figure 3 and Figure 4, we do not
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SELF ATTENTION

➤ self-attention mechanism: 

➤ better at the middle-to-high level feature maps (e.g., feat32 
and feat64) than at the low level feature maps (e.g., feat8 and 
feat16). 
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Figure 5: Visualization of attention maps. These images were generated by SAGAN. We visualize
the attention maps of the last generator layer that used attention, since this layer is the closest to the
output pixels and is the most straightforward to project into pixel space and interpret. In each cell, the
first image shows three representative query locations with color coded dots. The other three images
are attention maps for those query locations, with corresponding color coded arrows summarizing
the most-attended regions. We observe that the network learns to allocate attention according to
similarity of color and texture, rather than just spatial adjacency. For example, in the top-left cell, the
red point attends mostly to the body of the bird around it, however, the green point learns to attend to
other side of the image. In this way, the image has a consistent background (i.e., trees from the left
to the right though they are separated by the bird). Similarly, the blue point allocates the attention
to the whole tail of the bird to make the generated part coherent. Those long-range dependencies
could not be captured by convolutions with local receptive fields. We also find that although some
query points are quite close in spatial location, their attention maps can be very different, as shown
in the bottom-left cell. The red point attends mostly to the background regions, whereas the blue
point, though adjacent to red point, puts most of the attention on the foreground object. This also
reduces the chance for the local errors to propagate, since the adjacent position has the freedom to
choose to attend to other distant locations. These observations further demonstrate that self-attention
is complementary to convolutions for image generation in GANs. As shown in the top-right cell,
SAGAN is able to draw dogs with clearly separated legs. The blue query point shows that attention
helps to get the structure of the joint area correct.

Model Inception Score FID

AC-GAN [31] 28.5 /

SNGAN-projection [17] 36.8 27.62⇤

SAGAN 52.52 18.65

Table 2: Comparison of the proposed SAGAN with state-of-the-art GAN models [19, 17] for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially
released weights.

5.3 Comparison with the state-of-the-art

SAGAN is also compared with state-of-the-art GAN models [19, 17] for class conditional image
generation on ImageNet. As shown in Table 2, our proposed SAGAN achieves the best Inception
score and FID. SAGAN significantly improves the best published Inception score from 36.8 to 52.52.
The lower FID (18.65) achieved by SAGAN also indicates that SAGAN can better approximate
the original image distribution by using the self-attention module to model the global dependencies
between image regions. Figure 6 shows some sample images generated by SAGAN.

7

Figure 5: Visualization of attention maps. These images were generated by SAGAN. We visualize
the attention maps of the last generator layer that used attention, since this layer is the closest to the
output pixels and is the most straightforward to project into pixel space and interpret. In each cell, the
first image shows three representative query locations with color coded dots. The other three images
are attention maps for those query locations, with corresponding color coded arrows summarizing
the most-attended regions. We observe that the network learns to allocate attention according to
similarity of color and texture, rather than just spatial adjacency. For example, in the top-left cell, the
red point attends mostly to the body of the bird around it, however, the green point learns to attend to
other side of the image. In this way, the image has a consistent background (i.e., trees from the left
to the right though they are separated by the bird). Similarly, the blue point allocates the attention
to the whole tail of the bird to make the generated part coherent. Those long-range dependencies
could not be captured by convolutions with local receptive fields. We also find that although some
query points are quite close in spatial location, their attention maps can be very different, as shown
in the bottom-left cell. The red point attends mostly to the background regions, whereas the blue
point, though adjacent to red point, puts most of the attention on the foreground object. This also
reduces the chance for the local errors to propagate, since the adjacent position has the freedom to
choose to attend to other distant locations. These observations further demonstrate that self-attention
is complementary to convolutions for image generation in GANs. As shown in the top-right cell,
SAGAN is able to draw dogs with clearly separated legs. The blue query point shows that attention
helps to get the structure of the joint area correct.

Model Inception Score FID

AC-GAN [31] 28.5 /

SNGAN-projection [17] 36.8 27.62⇤

SAGAN 52.52 18.65

Table 2: Comparison of the proposed SAGAN with state-of-the-art GAN models [19, 17] for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially
released weights.

5.3 Comparison with the state-of-the-art

SAGAN is also compared with state-of-the-art GAN models [19, 17] for class conditional image
generation on ImageNet. As shown in Table 2, our proposed SAGAN achieves the best Inception
score and FID. SAGAN significantly improves the best published Inception score from 36.8 to 52.52.
The lower FID (18.65) achieved by SAGAN also indicates that SAGAN can better approximate
the original image distribution by using the self-attention module to model the global dependencies
between image regions. Figure 6 shows some sample images generated by SAGAN.

7



COMPARATIVE RESULTS

!38

Figure 5: Visualization of attention maps. These images were generated by SAGAN. We visualize
the attention maps of the last generator layer that used attention, since this layer is the closest to the
output pixels and is the most straightforward to project into pixel space and interpret. In each cell, the
first image shows three representative query locations with color coded dots. The other three images
are attention maps for those query locations, with corresponding color coded arrows summarizing
the most-attended regions. We observe that the network learns to allocate attention according to
similarity of color and texture, rather than just spatial adjacency. For example, in the top-left cell, the
red point attends mostly to the body of the bird around it, however, the green point learns to attend to
other side of the image. In this way, the image has a consistent background (i.e., trees from the left
to the right though they are separated by the bird). Similarly, the blue point allocates the attention
to the whole tail of the bird to make the generated part coherent. Those long-range dependencies
could not be captured by convolutions with local receptive fields. We also find that although some
query points are quite close in spatial location, their attention maps can be very different, as shown
in the bottom-left cell. The red point attends mostly to the background regions, whereas the blue
point, though adjacent to red point, puts most of the attention on the foreground object. This also
reduces the chance for the local errors to propagate, since the adjacent position has the freedom to
choose to attend to other distant locations. These observations further demonstrate that self-attention
is complementary to convolutions for image generation in GANs. As shown in the top-right cell,
SAGAN is able to draw dogs with clearly separated legs. The blue query point shows that attention
helps to get the structure of the joint area correct.

Model Inception Score FID

AC-GAN [31] 28.5 /

SNGAN-projection [17] 36.8 27.62⇤

SAGAN 52.52 18.65

Table 2: Comparison of the proposed SAGAN with state-of-the-art GAN models [19, 17] for class
conditional image generation on ImageNet. FID of SNGAN-projection is calculated from officially
released weights.

5.3 Comparison with the state-of-the-art

SAGAN is also compared with state-of-the-art GAN models [19, 17] for class conditional image
generation on ImageNet. As shown in Table 2, our proposed SAGAN achieves the best Inception
score and FID. SAGAN significantly improves the best published Inception score from 36.8 to 52.52.
The lower FID (18.65) achieved by SAGAN also indicates that SAGAN can better approximate
the original image distribution by using the self-attention module to model the global dependencies
between image regions. Figure 6 shows some sample images generated by SAGAN.

7

goldfish

indigo
bunting

redshank

saint
bernard

tiger
cat

stone
wall

broccoli

geyser

valley

rapeseed

coral
fungus

Figure 6: 128⇥128 example images generated by SAGAN for different classes. Each row shows
samples from one class.

6 Conclusion

In this paper, we proposed Self-Attention Generative Adversarial Networks (SAGANs), which incor-
porate a self-attention mechanism into the GAN framework. The self-attention module is effective
in modeling long-range dependencies. In addition, we show that spectral normalization applied to
the generator stabilizes GAN training and that TTUR speeds up training of regularized discrimina-
tors. SAGAN achieves the state-of-the-art performance on class-conditional image generation on
ImageNet.
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Batch Ch. Param (M) Shared Hier. Ortho. Itr ⇥103 FID IS
256 64 81.5 SA-GAN Baseline 1000 18.65 52.52
512 64 81.5 7 7 7 1000 15.30 58.77(±1.18)

1024 64 81.5 7 7 7 1000 14.88 63.03(±1.42)
2048 64 81.5 7 7 7 732 12.39 76.85(±3.83)
2048 96 173.5 7 7 7 295(±18) 9.54(±0.62) 92.98(±4.27)
2048 96 160.6 3 7 7 185(±11) 9.18(±0.13) 94.94(±1.32)
2048 96 158.3 3 3 7 152(±7) 8.73(±0.45) 98.76(±2.84)
2048 96 158.3 3 3 3 165(±13) 8.51(±0.32) 99.31(±2.10)
2048 64 71.3 3 3 3 371(±7) 10.48(±0.10) 86.90(±0.61)

Table 1: Fréchet Inception Distance (FID, lower is better) and Inception Score (IS, higher is better)
for ablations of our proposed modifications. Batch is batch size, Param is total number of param-
eters, Ch. is the channel multiplier representing the number of units in each layer, Shared is using
shared embeddings, Hier. is using a hierarchical latent space, Ortho. is Orthogonal Regularization,
and Itr either indicates that the setting is stable to 106 iterations, or that it collapses at the given
iteration. Other than rows 1-4, results are computed across 8 different random initializations.

(2018), D is conditioned by using the cosine similarity between its features and a set of learned
class embeddings as additional evidence for distinguishing real and generated samples, effectively
encouraging generation of samples whose features match a learned class prototype.

Objectively evaluating implicit generative models is difficult (Theis et al., 2015). A variety of works
have proposed heuristics for measuring the sample quality of models without tractable likelihoods
(Salimans et al., 2016; Heusel et al., 2017; Bińkowski et al., 2018; Wu et al., 2017). Of these,
the Inception Score (IS, Salimans et al. (2016)) and Fréchet Inception Distance (FID, Heusel et al.
(2017)) have become popular despite their notable flaws (Barratt & Sharma, 2018). We employ
them as approximate measures of sample quality, and to enable comparison against previous work.

3 SCALING UP GANS

In this section, we explore methods for scaling up GAN training to reap the performance benefits
of larger models and larger batches. As a baseline, we employ the SA-GAN architecture of Zhang
et al. (2018), which uses the hinge loss (Lim & Ye, 2017; Tran et al., 2017) GAN objective. We
provide class information to G with class-conditional BatchNorm (Dumoulin et al., 2017; de Vries
et al., 2017) and to D with projection (Miyato & Koyama, 2018). The optimization settings follow
Zhang et al. (2018) (notably employing Spectral Norm in G) with the modification that we halve the
learning rates and take two D steps per G step. For evaluation, we employ moving averages of G’s
weights following Karras et al. (2018); Mescheder et al. (2018), with a decay of 0.9999. We use
Orthogonal Initialization (Saxe et al., 2014), whereas previous works used N (0, 0.02I) (Radford
et al., 2016) or Xavier initialization (Glorot & Bengio, 2010). Each model is trained on 128 to 512
cores of a Google TPU v3 Pod (Google, 2018), and computes BatchNorm statistics in G across all
devices, rather than per-device as in standard implementations. We find progressive growing (Karras
et al., 2018) unnecessary even for our largest 512⇥512 models.

We begin by increasing the batch size for the baseline model, and immediately find tremendous
benefits in doing so. Rows 1-4 of Table 1 show that simply increasing the batch size by a factor of
8 improves the state-of-the-art IS by 46%. We conjecture that this is a result of each batch covering
more modes, providing better gradients for both networks. One notable side effect of this scaling is
that our models reach better final performance in fewer iterations, but become unstable and undergo
complete training collapse. We discuss the causes and ramifications of this in Section 4. For these
experiments, we stop training just after collapse, and report scores from checkpoints saved just
before.

We then increase the width (number of channels) in every layer by 50%, approximately doubling
the number of parameters in both models. This leads to a further IS improvement of 21%, which
we posit is due to the increased capacity of the model relative to the complexity of the dataset.
Doubling the depth does not appear to have the same effect on ImageNet models, instead degrading
performance.
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