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3D Mesh Unfolding via Semidefinite Programming
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Figure 1: Mesh unfolding. Top: isometric 3D models with different poses. Bottom: our method unfolds the meshes into isometry-invariant
canonical poses which facilitate subsequent tasks including shape retrieval, segmentation, matching, etc.

Abstract
Mesh unfolding is a powerful pre-processing tool for many tasks such as non-rigid shape matching and retrieval. Shapes with
articulated parts may exist large variants in pose, which brings difficulties to those tasks. With mesh unfolding, shapes in
different poses can be transformed into similar canonical forms, which facilitates the subsequent applications. In this paper,
we propose an automatic mesh unfolding algorithm based on semidefinite programming. The basic idea is to maximize the
total variance of the vertex set for a given 3D mesh, while preserving the details by minimizing locally linear reconstruction
errors. By optimizing a specifically-designed objective function, vertices tend to move against each other as far as possible,
which leads to the unfolding operation. Compared to other Multi-Dimensional Scaling (MDS) based unfolding approaches, our
method preserves significantly more details and requires no geodesic distance calculation. We demonstrate the advantages of
our algorithm by performing 3D shape matching and retrieval in two publicly available datasets. Experimental results validate
the effectiveness of our method both in visual judgment and quantitative comparison.

† Corresponding author. E-mail: lianzhouhui@pku.edu.cn

1. Introduction

With the rapid growth of large 3D shape repositories, efficient
ways to organize and explore them become extremely important.
Content-based shape retrieval [TV10] has drawn much attention
since decades ago and there exist large amounts of work. It pro-
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vides an intuitive way of searching similar shapes for queries pro-
vided by users. However, for non-rigid 3D shapes, many traditional
approaches could fail due to the large variants in pose. Non-rigid
shapes are generally composed of articulated parts which are able
to transform rigidly. To conduct non-rigid shape retrieval, there are
typically three types of methods as follows: 1) locality-based pose-
invariant features [SAS07, OOFB08]; 2) global isometry-invariant
properties [BB13]; 3) canonical forms. Among these methods, the
last one is considered to be the most promising solution due to
the fact that it can be utilized as a pre-processing step ahead of
the rigid-shape retrieval pipeline, which facilitates the application
of existing powerful rigid-shape retrieval techniques into non-rigid
cases. Despite its importance, techniques for mesh unfolding are far
from being exhaustively explored. Existing techniques are mainly
based on the Multi-Dimensional Scaling (MDS) pipeline. This kind
of methods requires geodesic calculation and bring severe distor-
tions. Geodesic distance is vulnerable to topological noise and cal-
culating it is very time-consuming.

In this paper, we propose an automatic mesh unfolding
method by optimizing an objective function using semi-definite
programming. Motivated by the Maximum Variance Unfold-
ing (MVU) [WS04] algorithm, we formulate the total vertex vari-
ance to the trace of the Gram matrix. Furthermore, we integrate
a locally linear preserving term into the objective function, which
leads to an enhancement of the detail-preserving ability. In general,
the contributions of this paper lie in the following four aspects:
1) A new 3D mesh unfolding method is proposed without calculat-
ing geodesic distances; 2) We formulate the unfolding problem as a
form of semidefinite programming and deduce the integration of lo-
cally linear preserving term; 3) Our method can be applied to non-
watertight meshes with holes while most existing approaches can
only handle watertight models; 4) The accuracy of shape matching
and retrieval can be improved by employing the proposed method.
Our method achieves the state-of-the-art performance among ap-
proaches that extract GSMD 3D shape descriptors [LRS10] from
various kinds of 3D canonical forms on two public datasets, which
suggests the strongest stretching ability.

2. Related Work

Mesh unfolding. The most widely-used 3D mesh unfolding
method is realized by leveraging the ISOMAP [TSL00] method.
ISOMAP first approximates the geodesic distance by calculating
the pairwise shortest paths on the given mesh structure. Then clas-
sical Multi-Dimensional Scaling (MDS) is carried out to obtain
the coordinates of the unfolded mesh. Alternatively, the classical
MDS can be substituted by the least-square MDS [BG03] to ob-
tain unfolding results with less distortions. Recently, [Sah15] pro-
posed to take landmarks of MDS as handles to deform the origi-
nal mesh. Yet the distortions brought by ISOMAP pipeline algo-
rithms remain serious, and the geodesic distances are computa-
tionally intensive and vulnerable. Lian et al. [LGX13] proposed
the first feature-preserving mesh unfolding method which utilizes
the ISOMAP canonical form as guidance and deforms the original
mesh into the unfolded pose. The feature-preserving method sig-
nificantly improves the performance in shape retrieval which veri-
fies the importance of mesh unfolding. Yet, their algorithm requires

Figure 2: The neighbor graph defined by mesh topology (left) and
the one constructed by MVU algorithm (right). Compared with the
mesh topology, MVU constructs a complete graph within the same
neighborhood (red edges indicate the augmentations).

plausible segmentations of meshes. Manual segmentations are time
and effort-consuming while auto-segmentation is far from satisfy-
ing. The most recent work of mesh unfolding is implemented using
finite-elements and deformation [SK16]. Their method is quite dif-
ferent against the ISOMAP pipeline and no calculation of geodesic
distance is required. However, their method needs the tetrahedral-
ization of triangle meshes. This disables the method from being
used in holey meshes. Furthermore, choosing appropriate param-
eters for regularization weights in their method is hard since it is
difficult to compromise between the unfolding intensity and over-
stretching.

Maximum variance unfolding. The Maximum Variance Un-
folding (MVU) method [WS04] is first proposed as an approach
to discover nonlinear underlying manifold embedded in a high-
dimensional space. The basic idea is to maximize the total variance
while preserving local structures. The method formulates the total
variance within a point set into the trace of the Gram matrix. The
length of each edge is preserved by adding constraints to the Gram
matrix. Then semidefinite programming techniques are employed
to obtain the optimized solution. Compared to ISOMAP, MVU re-
quires no vulnerable and computationally intensive geodesic dis-
tances calculation. In MVU, the geodesic distances are approxi-
mated by maximizing the overall variance instead of computing
the shortest paths, which makes it more robust to topology error
and noise.

This paper presents a novel mesh unfolding method that also re-
quires no calculation for geodesic distances. Thereby, our method
is robust to mesh noises and holes. It yields comparable visual re-
sults as [SK16]. Additionally, since the proposed method operates
directly on the given mesh, no additional vertices and triangles are
introduced, which facilitates subsequent processing such as feature
extraction and registration.

3. Algorithm

In this section, we describe the proposed algorithm in details.
We first briefly review the Maximum Variance Unfolding (MVU)
method and our modification in order to apply it in mesh unfold-
ing. Then, we improve the original approach to make it more detail-
preserving. Specifically, a locally linear preserving term is deduced
and integrated into the objective function. With this term, more de-
tails on the mesh can be preserved and hence the quality of the
unfolded mesh is improved.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



Juncheng Liu, Zhouhui Lian and Jianguo Xiao / 3D Mesh Unfolding via Semidefinite Programming

Figure 3: Demonstration of the effect of locality preserving term. (a) original mesh. (b) the simplified mesh of (a). (c) the unfolded mesh by
only maximum variance term (4). (d) the unfolded mesh by locality preserving maximum variance (13) and is restored to original resolution
(e).

3.1. Maximum variance unfolding

The MVU algorithm, which is also called semidefinite embed-
ding. X = {x1,x2, . . . ,xn}, where n is the number of points, the
MVU method first establishes a neighborhood structure by con-
structing k nearest neighbor graph. Then it tries to find a set of
low-dimensional representation Y , such that Y keeps the local ge-
ometry of X :

Y = argmin
Y

n

∑
i=1

∑
j,k∈N(i)

(‖x j− xk‖2−‖y j− yk‖
2)2. (1)

where N(i) is the index set of neighbors of the point xi. All pair-
wise Euclidean distances within the same neighborhood are hence
preserved by minimizing the above function. However, solving (1)
requires non-convex optimization techniques, which are typically
complex and time-consuming. MVU converts the above function
to a set of hard constraints and employs semidefinite programming
to address this problem.

Let D denote the Euclidean distance matrix which stores Eu-
clidean distances between all pairs of points in X , i.e. Di j = ‖xi−
x j‖. Similarly, we define the corresponding squared Euclidean dis-
tance matrix as S, where Si j = D2

i j. The overall variance of X can
be represented as ∑i j ‖xi− x j‖2. With the above definition, it can
also be written as ∑i j D2

i j = ∑i j Si j. Assume that K is the Gram
matrix of the given point set X and K collects all the pairwise in-
ner product of X , it is easy to verify that the Gram matrix and the
Euclidean matrix can be related as follows:

D2
i j = Kii +K j j−2Ki j. (2)

The overall variance then can be formulated using the Gram matrix
as:

∑
i j

D2
i j = ‖D‖2

F = 2n tr(K) (3)

where the ‖ · ‖F is the frobenius norm. Therefore, the objective

function that MVU optimizes is defined as:

maximize tr(K)

s.t. ∑
i j

Ki j = 0

K ∈ S+n
∀ i,Kk,k +K j, j−2Kk, j = Sk, j,

j,k ∈ N(i).

(4)

Given a mesh to be unfolded, we denote the mesh as a tuple
M = {V,E}, where V and E represent the vertex set and edge
set, respectively. We regard the vertex set V as the data point set X
described above. Then the optimization problem introduced in (4)
is resolved to produce the unfolded mesh.

Technically, MVU preserves the lengths of edges between all
pairs of points within the same neighborhood, which is a complete
graph. However, in our experiments, we found that using the clas-
sical MVU algorithm fails to produce a plausible mesh, this is due
to the fact that constructing the nearest neighbor graph violates the
original triangle mesh’s topology. As a result, a great amount of
edges are unnecessarily preserved. Over stretching and distortions
are hence introduced.

To solve this problem, we directly use the structure of the orig-
inal mesh instead. Namely, we preserve the length of each edge of
the triangles of the mesh to be unfolded. Our modified objective
function is defined as:

maximize tr(K)

s.t. ∑
i j

Ki j = 0

K ∈ S+n
∀ < vk,v j >∈ E ,
Kk,k +K j, j−2Kk, j = Sk j.

(5)

In the modified objective function, we preserve the length of each
edge for every triangle instead of the constructed edge in the com-
plete graph of original setting (4) as shown in Figure 2. The topol-
ogy contained in the triangular mesh is far more trustworthy than
the neighborhood defined by knn or ε-neighborhood.

After solving the optimization problem (5), the optimized Gram
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Figure 4: Unfolding results with different regulariza-
tion weights of locally linear preserving (left to right:
α = 1/100,1/300,1/500,1/700 , and 1/900) and number of
neighbors (top to bottom: k = 3,5,7, and 9). The top-left of this
matrix approaches the strongest unfolding intensity and weakest
detail-preserving, whereas the bottom-right is on the contrary.

matrix is obtained. Then, We implement the standard Multi-
Dimensional Scaling (MDS) or least square MDS to obtain the final
coordinates of the unfolded mesh. Note that the topology remains
the same during above all processing stages.

3.2. Locally linear structure preserving

In the previous section, the core idea of our algorithm is introduced.
However, the unfolded mesh obtained by simply employing (5) is
insufficient. As illustrated by Figure 3, some detail features are
lost and squashed after optimization (yet the result still looks more
natural than those generated by the traditional MDS and LSMDS
methods).

To address this issue, we add one term in the objective function
to enhance the ability of detail preserving. Inspired by the locally
linear embedding (LLE) approach [RS01], we integrate the local
linear preserving term into the optimizing function, which in turn
preserves the local geometry of the mesh. According to the theo-
rem of barycentric coordinates, each point within a simplex can be
represented by the linear combination of the vertices that span the
simplex. Specifically, assuming P = {p1, p2, . . . , pd+1} spans the
simplex in Rd , an arbitrary point p within it can be represented as
p = ∑

d+1
i=1 wi pi. In matrix format, we have p = Pw.

Given a 3D triangle meshM = {V,E}, each individual vertex
vi is adjoined to some neighbor vertices (k nearest neighbors). We
can therefore define the local geometry by the linear reconstruction
coefficients of the neighbor vertices:

wi = argmin
a
‖vi− ∑

j∈N(i)
a jv j‖2, s.t.

|N(i)|

∑
j=1

a j = 1. (6)

We enforce the sum of coefficients to unit. In the above formula,
the linear coefficients wi for each vi are obtained by minimizing the
least square reconstruction error of vi using the Lagrangian mul-
tiplier method. Each wi is augmented to a length of |V| by filling
zeros to the entries corresponding to non-neighbors. The so-called

locally linear embedding error is minimized to obtain an alternative
configuration Y for the vertex set V:

Y = argmin
Y

|V|

∑
i=1
‖yi−Ywi‖2 (7)

under the constraints

Y1 = 0, YYT = I, (8)

where Y = [y1,y2, . . . ,yn] ∈Rd×n is the data matrix of Y . Written
in matrix format, the LLE kernel G is defined as:

G = (I−W)T (I−W), (9)

where the matrix W stores wT
i in its rows. With the kernel, we are

now able to rewrite (7) as:

Y = argmin
Y

tr(YGYT ). (10)

Classical LLE performs spectral decomposition of the kernel ma-
trix G described above. However, we would like to integrate this
term in the semidefinite programming framework proposed in
Equation (5). To achieve this, we reformulate (10) using the com-
mutative law of trace:

Y = argmin
Y

tr(YT YG) (11)

= tr(KG). (12)

where the semidefinite matrix K is the same as the one defined
in the previous section. Minimizing the locally linear reconstruc-
tion error reinforces the detail preserving ability of the proposed
method. Integrating this term with the above variance maximizing
term (5), we finalize the objective function as:

minimize
K

tr(K(G−αI))

s.t. ∑
i j

Ki j = 0

K ∈ S+n
∀ < vk,v j >∈ E ,
Kk,k +K j, j−2Kk, j = Sk j.

(13)

Where α is a weighting parameter balancing the stretching inten-
sity and the property of locality preserving. An intuitive way of
understanding how it works is illustrated by Figure 4. Smaller α

favors more detail-preserving and weakens the unfolding intensity,
while larger α is right on the contrary. In our implementations, we
always set α to be 1/100.

Another parameter influences the results is k, the number of
neighbors for reconstruction coefficients calculation. It collaborates
with α on the scale of detail-preserving. We found that the influence
of choosing different k is not vital as illustrated in Figure 13. In our
implementations, we set k to 30 for all models.

4. Experiments

4.1. Datasets and evaluation methods

We implemented the proposed algorithm in Matlab 2014a. To solve
the optimization problem (13) we used CVX, a package for spec-
ifying and solving convex problems [GB14, GB08]. The running
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Figure 5: Matching results. Top: the original meshes and the
correspondence. Bottom: the unfolded meshes and the correspon-
dence. Pseudo-color demonstrates the correspondence of mesh1
and mesh2.

Figure 6: The thumbnail of PKUNSB models.

time for a mesh with 1.5k triangle faces is 170s in average. For a
mesh with 800 faces, the computational time reduces to 15s on a
3.6GHz PC with 8GB RAM. In our experiments, all meshes are
simplified to 1.5k faces.

We evaluate our proposed algorithm in two datasets:
SHREC15 [LZC∗15] human-like subset and Peking Univer-
sity Non-rigid 3D Shape Benchmark (PKUNSB) dataset [LGX13].
SHREC15 non-rigid 3D shape database† is a 3D shape repos-
itory with 1200 meshes belonging to 50 classes. We pick 8
human-like (man, santa, woman, mermaid, mouse, robot, sumotori
and woodman) classes from the dataset which consists of 192
models in total. The PKUNSB database contains 90 articulated 3D
watertight meshes categorized into 6 classes with equal size. A
thumbnail picture of the models in PKUNSB is shown in Figure 6.
For visual judgments, we select 8 representative meshes (from 4
different categories) and their corresponding unfolded versions
along with the results of 4 other approaches compared, please
refer to the supplemental materials for details. Meanwhile, we also
illustrate the advantages of our proposed method by two different
applications: 3D shape matching and retrieval, where quantitative
measurements are provided in shape retrieval tasks.

† http://www.icst.pku.edu.cn/zlian/
shrec15-non-rigid/index.htm

Figure 7: A mesh with two holes and the resulting unfolded mesh
obtained by the proposed method.

Figure 8: Precision-recall curve of the retrieval performance eval-
uated on SHREC15 subset using GSMD descriptors.

Figure 9: Precision-recall curve of the retrieval performance eval-
uated on SHREC15 subset using CMBOF descriptors.
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original CMDS LSMDS

FPCF DFPU ours

Figure 10: The stretching intensity of 5 different methods.
Top: from left to right, original model, MDS [KW78] and
LSMDS [EK03]. Bottom: from left to right, FPCF [LGX13],
DFPU [SK16], and our method. The left leg of the human is best
unfolded by our method.

4.2. Shape matching

For point cloud matching, we first sample uniformly on the
two meshes to be matched. Then we employ Coherent Point
Drift (CPD) [MSC10] algorithm to register 3D point sets. As
shown in Figure 5, two human body shapes are sampled and reg-
istered. In our implementation, we sample 3k points uniformly on
the given meshes. Pseudo-color is utilized to demonstrate the cor-
respondence, i.e. vertices with the same color indicate the pair-
wise correspondence. 6 salient points are selected for demonstra-
tion and the correspondences between two meshes are indicated
by lines. Compared to the corresponding results of original shapes,
significant improvement has been achieved by matching the un-
folded meshes instead. Note that our algorithm operates directly
on the original mesh instead of filling the mesh by finite ele-
ments, and thus the original topology is preserved without involv-
ing additional vertices. Thereby, matching could be performed on
the unfolded meshes instead and resulting correspondence can be
directly mapped back to the original meshes. As a preprocess-
ing tool, our proposed unfolding method can be integrated into
any rigid [SLW02] and non-rigid [BBK∗10] shape matching ap-
proaches.

4.3. 3D shape retrieval

In this section, we demonstrate the effectiveness of our method in
3D shape retrieval. As we know, the crucial steps of 3D shape re-
trieval [LGB∗13] lie in feature extraction and similarity calcula-
tion. In our experiments, we take advantage of two existing view-
based features for 3D shape retrieval: the Geodesic Sphere based
Multi-view Descriptors (GSMD) [LRS10] and the Clock Match-
ing Bag-of-Features (CMBOF) [LGSX13]. The GSMD serves as
a global descriptor while CMBOF is considered as a local fea-
ture. For both methods, we normalize the poses of shapes by per-
forming PCA beforehand. For evaluation, we adopt the following
five widely-used measures: nearest neighbors, first tier, second tier,

Method NN FT ST e_Measure DCG
ours 91.1 70.8 91.2 56.9 91.1
ours (w/o LLP) 93.3 69.0 90.8 56.5 90.6
CMDS 92.2 65.2 81.7 52.2 88.6
LSMDS 84.4 59.8 77.9 48.8 84.4
DFPU 83.3 58.2 79.7 50.0 83.9
FPCF 85.6 60.4 76.3 48.6 84.7

Table 1: Retrieval performance evaluated on PKUNSB benchmark
using GSMD.

Method NN FT ST e_Measure DCG
ours 100.0 82.0 96.8 60.0 96.3
ours (w/o LLP) 97.8 81.3 97.0 59.8 95.8
CMDS 95.5 71.1 91.1 57.0 91.7
LSMDS 97.8 79.4 97.7 60.3 90.0
DFPU 98.9 87.8 97.5 60.0 97.7
FPCF 98.9 89.0 99.4 60.7 97.3

Table 2: Retrieval performance evaluated on PKUNSB benchmark
using CMBOF.

e_measure and Discounted Cumulative Gain (DCG). The nearest
neighbor calculates the percentage of the closest retrieved shapes
that belong to the same class as the query. The first tier calculates
the ratio of the related retrieved shapes to the size of query class
|C| when the number of the retrieved shapes reaches |C|. Second
tier share the same meaning as the first-tier except for the num-
ber of retrieved shapes reaches 2|C|. The e_measure indicates the
performance of top-ranking positions taking the assumption that
results raked higher is more interested. DCG considers the ranking
position of the retrieved shapes, i.e. the top-ranked correct results
are more weighted than the bottom-ranked ones.

Table 1 and Table 2 show the performance measurements de-
scribed above for different mesh unfolding methods evaluated in
SHREC15 human-like subset using GSMD features and CMBOF
features, respectively. Table 3 and Table 4 present the evalua-
tion results in PKUNSB dataset. Figure 8 and Figure 9 depict the
Precision-Recall curves of Table 1 and Table 2, respectively. And
Figure 11 and Figure 12 plot the PR curves of Table 3 and Table 4.
We are unable to execute the FPCF [LGX13] on SHREC15 subset
due to the lack of segmentation files.

We can observe from the figures that our proposed method
achieves the state-of-the-art performance in GSMD descriptors and

Method NN FT ST e_Measure DCG
ours 85.4 63.4 77.5 58.7 86.5
ours (w/o LLP) 89.6 62.6 77.8 58.8 87.4
CMDS 82.8 54.6 73.3 53.1 83.6
LSMDS 85.4 61.7 77.6 58.1 85.9
DFPU 80.7 53.9 71.8 51.9 82.8

Table 3: Retrieval performance evaluated on SHREC15 non-rigid
subset using GSMD.
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Method NN FT ST e_Measure DCG
ours 97.9 84.1 93.1 74.7 95.9
ours (w/o LLP) 97.4 82.4 91.0 73.4 95.0
CMDS 91.7 71.0 89.2 67.5 91.3
LSMDS 94.3 84.2 96.2 76.0 95.3
DFPU 98.9 89.2 97.1 78.7 97.9

Table 4: Retrieval performance evaluated on SHREC15 non-rigid
subset using CMBOF.

Figure 11: Precision-recall curve of the retrieval performance
evaluated on PKUNSB dataset using GSMD descriptors.

Figure 12: Precision-recall curve of the retrieval performance
evaluated on PKUNSB dataset using CMBOF descriptors.

Figure 13: The Precision-recall curve of choosing different k eval-
uated on SHREC15 subset using CMBOF features.

acceptable results in CMBOF features. Yet our method requires no
geodesic computation and watertightness for the target mesh. As
shown in Figure 7, we add two holes on the original mesh, while the
resulting unfolded mesh still keeps plausible. Compared to the ex-
isting two feature-preserving unfolding methods [LGX13, SK16],
our algorithm requires no tetrahedralization or segmentation, which
brings more robustness and usability.

The evaluation results of our unfolding methods with and with-
out locally linear preserving term suggest the necessity of adding
this term. As illustrated in Figure 3, the locally linear preserving
term significantly improves the visual quality of the unfolded mesh.
However, for GSMD features, we do not observe an obviously bet-
ter performance compared to the simple maximum variance un-
folding version. This is probably due to the fact that GSMD cap-
tures the global view features which weakens the influence of lo-
cal details. Contrarily, when utilizing the CMBOF approach, our
method with locally linear preserving term outperforms the ver-
sion with simple maximum variance unfolding. This is mainly due
to the fact that CMBOF describes views around the object by ex-
tracting SIFT salient points which weights more on detail features.
This also explains why our method achieves state-of-the-art perfor-
mance in GSMD evaluations: for a global descriptor the stretching
intensity weights more than the detail-preserving. And for local de-
scriptors this is right on the contrary. This also suggests that our
algorithm achieves the strongest stretching intensity with accept-
able detail-preserving ability (Figure 10). Therefore, our method is
most suitable for global features, which is much faster to obtain
than the local descriptors that need storage and clustering. Since
the shapes within the dataset are very similar as shown in Figure 6,
our method has the potential to be applied to the scenarios where a
strong detail-distinguishing ability is expected.

Figure 13 illustrates the influence of choosing different k values.
Larger k covers a larger geometry to be preserved while smaller
one is on the contrary. We can observe in the figure that when k
increases from 10 to 30, the retrieval result improves slightly, but
fall back down when k reaches to 40. That is due to the fact that
larger k reinforces the detail-preserving but reduces the stretching
strength. k is related to the scale of rigid-like component of 3D
models. Due to the slightness of influence, we set k = 30 across all
the shapes in our implementations.

5. Conclusion and limitations

In this paper, we proposed a 3D mesh unfolding algorithm taking
advantage of semidefinite programming techniques. By maximiz-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



Juncheng Liu, Zhouhui Lian and Jianguo Xiao / 3D Mesh Unfolding via Semidefinite Programming

Figure 14: Failure cases. Left: the original mesh. Right: the un-
folded mesh.

ing the variance of a given mesh, the canonical pose of the mesh
is obtained by optimizing a carefully-designed objective function.
To obtain more intensity of detail-preserving, we introduced the lo-
cally linear preserving term and integrated it into the programming
of Gram matrix. We demonstrate the advantages of our method by
two applications: 3D shape matching and retrieval. Both quantita-
tive and visual evaluations approve the effectiveness of our algo-
rithm.

Despite those advantages, the proposed method sometimes fails
when the topology prevents the mesh to be unfolded. As shown in
Figure 14 (note the adhesion between the buttock and foot in human
body), our algorithm unfolds the arms and legs successfully, but
the adhesion remains unchanged. In these cases, we need to manu-
ally cut the adhesion spot and then implement the unfolding algo-
rithm. Also, a certain degree of inflations might be introduced due
to the variance maximization. Furthermore, due to the high compu-
tational burden of semidefinite programming, our current method
can only handle simplified meshes with no more than 1.5k vertices
in a common PC. We believe that the problem would be solved as
the techniques for SDP progresses. Currently we solve this prob-
lem by mapping the simplified mesh back to the mesh with origi-
nal resolution, which has been demonstrated in the paper (see Fig-
ure 3). To unfold meshes directly with high-resolution, landmark-
based methods are possible solutions. We leave this as our future
work.
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Non-rigid point set registration: Coherent point drift (cpd). Advances in
Neural Information Processing Systems 32, 12 (2010), 1009–1016. 6

[OOFB08] OHBUCHI R., OSADA K., FURUYA T., BANNO T.: Salient
local visual features for shape-based 3d model retrieval. In IEEE Interna-
tional Conference on Shape Modeling and Applications (2008), pp. 93–
102. 2

[RS01] ROWEIS S. T., SAUL L. K.: Saul, l.: Nonlinear dimensionality
reduction by locally linear embedding. science 290, 2323-2326. Science
290, 5500 (2001), 2323–6. 4

[Sah15] SAHILLIOÄ§LU Y.: A shape deformation algorithm for con-
strained multidimensional scaling. Computers and Graphics 53 (2015).
2

[SAS07] SCOVANNER P., ALI S., SHAH M.: A 3-dimensional sift de-
scriptor and its application to action recognition. In International Con-
ference on Multimedia (2007), pp. 357–360. 2
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