
Pattern Recognition 59 (2016) 199–212
Contents lists available at ScienceDirect
Pattern Recognition
http://d
0031-32

n Corr
E-m

ckm@iit
journal homepage: www.elsevier.com/locate/pr
Human action recognition using genetic algorithms and convolutional
neural networks

Earnest Paul Ijjina n, Krishna Mohan Chalavadi
Visual Learning and Intelligence Group (VIGIL), Department of Computer Science & Engineering, Indian Institute of Technology Hyderabad,
Telangana 502285, India
a r t i c l e i n f o

Article history:
Received 30 August 2015
Received in revised form
13 January 2016
Accepted 13 January 2016
Available online 23 January 2016

Keywords:
Convolutional neural network (CNN)
Genetic algorithms (GA)
Human action recognition
Action bank features
x.doi.org/10.1016/j.patcog.2016.01.012
03/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: cs12p1002@iith.ac.in (E.P. Ijjina)
h.ac.in (K.M. Chalavadi).
a b s t r a c t

In this paper, an approach for human action recognition using genetic algorithms (GA) and deep con-
volutional neural networks (CNN) is proposed. We demonstrate that initializing the weights of a con-
volutional neural network (CNN) classifier based on solutions generated by genetic algorithms (GA)
minimizes the classification error. A gradient descent algorithm is used to train the CNN classifiers (to
find a local minimum) during fitness evaluations of GA chromosomes. The global search capabilities of
genetic algorithms and the local search ability of gradient descent algorithm are exploited to find a
solution that is closer to global-optimum. We show that combining the evidences of classifiers generated
using genetic algorithms helps to improve the performance. We demonstrate the efficacy of the proposed
classification system for human action recognition on UCF50 dataset.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Inspired by biological neural networks, artificial neural net-
works were proposed for function approximation. Shortly after
their introduction, the failure of shallow neural network models to
classify non-linearly separable data resulted in the emergence of
deep neural networks that contain more than two hidden layers
but lacked an effective training algorithm due to vanishing gra-
dient problem [1]. In the last decade, the advancements in com-
putational capabilities and the introduction of effective approa-
ches to train deep neural network architectures has lead to their
wide usage to address various computer vision challenges. Some
of the well-known machine learning tasks addressed by deep
neural network models include MNIST handwritten digit recog-
nition [2], ILSVRC object recognition [3] and facial expression
recognition in the wild [4]. A convolutional neural network is the
most popular approach among deep neural network model that
generally consists of an alternating sequence of convolution and
sub-sampling layers.

In the recent years, human action recognition in videos has
become a major domain of research due to its applications in video
retrieval, sports analysis, health monitoring, human computer
interaction and video surveillance. Several surveys papers were
published in the literature, each one emphasizing a particular
,

characteristic of recognition. The various methodologies for
recognizing actions performed by a single person are covered in
[5,6] focuses on the approaches to classify full body motions by
categorizing them into spatial and temporal structures. Approa-
ches for multi-view 2D and 3D human action recognition are
discussed in [7]. Several human action recognition datasets were
proposed in the literature [8] to address different types of pro-
blems like recognition of realistic activities, interaction and multi-
view analysis from varying sources. Most of the action recognition
techniques rely on some extracted features or descriptors for dis-
criminative information for classification. Some of the most com-
monly used features/descriptors for human action recognition are
bag-of-visual-words (BoVW) [9], histograms oriented gradient
(HOG) [10], histograms of optical flow (HOF) [10], motion bound-
ary histograms (MBH) [11], action bank features [12] and dense
trajectories [13]. Xiaodan Liang et al. [14] proposed a hierarchical
human action recognition system by modeling each observation as
an ensemble of spatio-temporal compositions. The latent structure
of actions is represented by spatio-temporal and-or graphs with
the leaf-nodes containing the spatial and temporal contextual
interactions. The inability of these approaches to scale across
multiple datasets has lead to the research on learning from data. In
the recent years, deep learning gained a lot of focus due to its
ability to learn features from data [15]. The effectiveness of con-
volutional neural networks for object recognition was demon-
strated in ILSVRC [3] (IMAGENET large scale visual recognition
challenge) [16,17] after which it was used to address various other
visual recognition tasks like face recognition [18], facial expression

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212200
recognition [19,4], video quality assessment [20] and action
recognition [21–23].

The convolutional neural network (CNN) introduced by LeCun
et al. in [24,25] is the most popular deep neural network model in
use for computer vision problems. One of the major initial
attempts to use CNN for action recognition was by Baccouche et al.
in [26]. In this work, a 3D convolutional neural network is trained
to assign a vector of features to a small number of consecutive
frames. The spatio-temporal evolution of these features is used by
a recurrent neural network for classification. In [21], Shuiwang Ji
et al. extracted gray, gradient and optical-flow information along x
and y directions from video frames and used them as input to a 3D
CNN model for human action recognition in surveillance videos.
Keze Wang et al. proposed a deep learning model for human
activity recognition in [27] by extending a CNN to incorporate
structure alternatives by using latent variables in convolutional
layers to manipulate the activation of neurons. The variation in
temporal composition of activities during recognition in handled
through partial activation of network configuration. A spatio-
temporal CNN is used by Liang Lin et al. in [28] to decompose
videos into temporal segments of sub-activities. The model is
iteratively optimized by a learning algorithm with radius-margin
regularization for human action recognition in RGBD videos.
Guilhem Chéron et al. proposed a pose-based CNN descriptor for
human action recognition in [29], that extracts and aggregates
appearance and flow information at characteristic positions
obtained from human pose. A differential recurrent neural net-
work to model the temporal evolution of state dynamics is pro-
posed by Vivek Veeriah et al. in [30] for action recognition. A
differential gating scheme emphasizing the information gain
caused by salient motions between successive frames is used to
learn spatio-temporal dynamics associated with salient motion
patters. Simonyan et al. proposed a two-stream convolutional
network for action recognition [31] that uses appearance from still
frames (spatial information) and motion between frames (tem-
poral information) as separate recognition streams. The softmax
scores of the two streams are combined using late fusion for
classification.

Deep learning aims to learn multiple levels of representation
with an intent to discover high-level abstractions for discrimina-
tion. In spite of the expressive power of deep architectures [32],
learning in deep architectures [33] is still a challenge. Since 2006,
several deep learning algorithms like greedy layer-wise training of
deep networks [34] that initializes weights by greedy layer-wise
unsupervised training, a fast learning algorithm for deep belief
nets [35] and strategies for training deep neural networks [36]
were proposed. There has been studies on the difficulty of training
a deep feed-forward neural network [37] and techniques to
improve generalization like: (1) early stopping [38] to avoid
overfitting, (2) dropout [39] to avoid co-adaptation by randomly
dropping neural units during training, (3) use of rectified linear
units [40] whose activation function has linear response in a short
range, (4) unsupervised pre-training for effective initialization of
weights in deep neural networks [41], and (5) the importance of a
well-designed initialization of network in deep learning [42].
There are even studies confirming that randomly chosen trails may
be more effective than grid search and manual search as they
effectively search a larger and less promising configuration space
for hyper-parameter optimization [43].

To address these challenges in training deep neural networks,
we explore the use of evolutionary algorithms (genetic algorithms
in particular) for optimization of weights of neural network. In the
literature, genetic algorithms (GA) were used to optimize neural
network systems by feature selection [44,45], topology selection
[46,47], weight selection [48,49]. GA is also used to optimize both
weights and topology simultaneously [50–53]. Most of the existing
evolutionary neural networks [54–56,49] are shallow and a
straightforward optimization of a deep neural network weights
could be computationally expensive. Some of the approaches
using GA for training deep neural networks includes the one
proposed by David et al. [57] to optimize a sparse autoencoder by
learning the weights using GA assisted back-propagation. In [58],
Oullette et al. used genetic algorithm to train the weights of a CNN
without getting trapped in a local minimum. The trained classifier
is used for crack detection and was evaluated on a dataset of 100
images. In [59], Fedorovici et al. proposed the use of evolutionary
optimization techniques like gravitational search algorithm [60]
and particle swarm optimization [61] to find the optimumweights
of a convolutional neural network. The weights of CNN are further
optimized using back-propagation algorithm for optical character
recognition. Koutník et al. proposed an online evolutionary train-
ing algorithm [62] for driving a race car in TORCS racing simulator
using recurrent neural network controller and max-pooling con-
volutional neural network for feature extraction. The controller
and CNN are simultaneously optimized using CoSyNE [63] using
the images generated due to the turn and speed predictions of the
controller.

In this work, we propose a hybrid search approach for training
the weights of a convolutional neural network classifier exploiting
the efficient global and local search abilities of evolutionary and
classical optimization algorithms for the prediction of human
actions in unconstrained videos. The novelty of the proposed
approach lies in: (1) modeling a convolutional neural network
classifier as a GA-chromosome and its use in improving classifi-
cation performance, (2) the use of genetic algorithms to explore
different basins (weight initializations) in the parameter space and
steepest-descent algorithm to expedite the search for finding the
local optimum in a given basin, and (3) combining evidences from
classifiers (that are generated by GA-framework) to overcome the
limitation of individual classifiers. The reminder of the paper is
organized as follows: Section 2 describes the proposed approach
and its rationale. The details of the experimental set up and per-
formance analysis are discussed in Section 3. Finally, the conclu-
sions and future work are presented in Section 4.
2. Proposed approach

In this work, we present a hybrid approach to train a CNN
classifier by effective utilization of global and local search cap-
abilities of genetic and steepest-descent algorithms, respectively.
Training a neural network using gradient-descent algorithm may
result in finding a solution that is stuck in a local minimum. As the
performance of a trained neural network classifier depends on its
initial weights, we explore different sets of initial weights to find
the optimum weight initialization using genetic algorithms. The
weights of masks in convolution layers (that act as feature
detectors) and the seed value used by the random number gen-
erator to initialize the fullyconnected neural network are con-
sidered as the GA chromosome, as shown in Fig. 1. The proposed
approach begins with the initialization of GA population, followed
by the fitness evaluation step in GA framework. During fitness
evaluation, the fitness score of each chromosome in the GA
population is computed by decoding the chromosome to initialize
the weights of a CNN classifier, as illustrated in step 2 of Fig. 1. The
classification accuracy of the CNN classifier, after being trained for

Fig. 1. Overview of the proposed classification system. The various steps involved in the proposed approach are numbered and a short description of each step is given on
the top right corner. Best viewed in color.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 201
p1 epochs using steepest descent algorithm, is considered as the
fitness value of the corresponding GA chromosome. Using GA,
several local basins were identified and the steepest-descent
algorithm is used to expedite the search to find the local opti-
mum in a given basin. After executing the GA framework for
several cycles with a population size of n, the final GA-population
is harvested to obtain n sets of initial weights. These n sets of
initial weights are used to initialize the convolutional neural net-
work (CNN) classifiers as shown in step 5 of Fig. 1. The classifica-
tion evidences of these n convolutional neural network classifiers
is combined to improve the performance. The next subsection
introduces genetic algorithms and explains how the fitness of a
chromosome (quality of solution) improves over GA cycles.

2.1. Genetic algorithms

Genetic algorithm is an adaptive heuristic search method based
on the evolutionary ideas of natural selection and genetics pro-
posed by Holland [64]. Inspired by the Darwin's Theory of evolu-
tion (survival of the fittest) [65], this approach considers a popu-
lation of GA chromosomes (candidate solutions) that go through a
series of changes due to selection, crossover and mutation
(operations) resulting in a modified set of chromosomes at the end
of each GA cycle. Assuming that the GA-chromosome captures the
key characteristics of the system being modeled, the average fit-
ness of the population is expected to improve over generations
due to the use of fitness measure (quality of the solution) of GA
chromosome in GA-operations. Refer [66] for a comprehensive
overview of genetic algorithms. The next section describes the
fusion of evidences from multiple classifiers for performance
evaluation.

2.2. Combining evidences from multiple classifiers

If o1, o2,…,oc are the binary decoded outputs of a classifier, then
the classifier is trained to output op¼1 and oj¼0, for all jap and
1r jrc for an observation of class p, where c represents the
number of classes. During testing, an observation will be labeled as
class p if op4oj, for all jap and 1r jrc. The fusion (combination)
of evidences across n classifiers involves the use of a fusion func-
tion like Max-rule, across the same index of classifier outputs to
find the binary decoded output of the combined model. If o1i, o2i,
…,oci are the outputs of the ith classifier in the combined model,
the jth output of the combined model is defined as fj¼max{oj1,oj2,
…,ojn}. An observation will be labeled as class p by the combined
model if f p4 f j, for all jap and 1r jrc. Combining evidences
across classifiers would generally result in a classifier that cor-
rectly labels the observations which are misclassified by some
classifiers (the limitation of a single classifier). An overview of
ensemble methods is given in [67]. The next subsection introduces
the representation of videos as action bank features and describes
the architecture of CNN classifier used for human action
recognition.

2.3. CNN classifier for human action recognition

In this section, we describe the underlying principles in the
computation of action bank features for a video. We will later
explain some of the characteristics and advantages of action bank
features that motivated us in their use as input features. Finally,
the design of the convolutional neural network classifier for
human action recognition from action bank features is explained
in detail.

2.3.1. Input features
Introduced by Sadanand et al. in [12], the action bank repre-

sentation of videos is a high level representation used for activity
recognition. An action bank is a collection of multiple action
detectors covering a broad semantic and viewpoint space. An
action detector is a template video of an action. Some of the action
detectors in the action bank are shown in Fig. 2 with columns
depicting different types of actions and rows indicating different
examples for the corresponding action.

Fig. 2. A screen-shot of 36 videos in the standard action bank with 205 elements. Best viewed in color. (Fig. Fig. 2 in [12]). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Action bank representation of boxing and running videos in KTH dataset: (a)–(c) are for boxing and (d)–(f) are for running action.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212202
To generate action bank features for a video, the correlation
video volume of each action detector is transformed into a 73-
dimensional response vector by volumetric-max-pooling. Thus, if
an action bank of size m is used for computing action bank fea-
tures of a video, the generated action bank features will be of size
m� 73. Since, an action detector may have similar response vector
for multiple instance of the same action, their action bank repre-
sentation may also have similar local patterns. The action bank
representation of boxing and running videos from KTH dataset is
shown in Fig. 3.

It can be observed that videos of same action will have similar
local patterns corresponding to some action detectors, depending
on their nature and extent of similarity. Therefore, it is possible to
discriminate actions by using a pattern recognition approach that
can learn local patterns associated with each action. In this work, a
convolutional neural network classifier capable of recognizing
local patterns with some degree of noise is used to recognize
human actions from action bank features.

2.3.2. Configuration of CNN classifier
A convolutional neural network (CNN) classifier comprises of a

convolutional neural network for feature extraction and a classifier
in the last step for classification. The architecture of CNN classifier
used for human action recognition from action bank features is
shown in Fig. 4. To avoid padding during computation, the first 72
elements of action bank features are considered, resulting in an
input of size m� 72. Here, m represents the size of action bank
used for generating action bank features. During training, the
convolution masks are learned to recognize the necessary dis-
criminative local patterns for classification. As the local patterns in
action bank features are horizontal and independent of its vertical
neighbors, only linear (horizontal) convolution masks are used in
the CNN classifier. A single convolution mask is considered in the

Fig. 4. Architecture CNN classifier for human action recognition.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 203
first convolution layer due to the simplicity of the pattern being
recognized (a white line) and to minimize the computational
complexity. We doubled the number of masks in the respective
succeeding layers and used two convolution masks in the second
convolution layer. In addition, to use the same mask size in both
convolution layers, we chose a mask size of 1�21. The sub-
sampling masks of size 1�2 are used to minimize the loss of
data during sub-sampling. The deep convolutional features
extracted by CNN are given as input to a fully connected, single
layer neural network for classification. The action labels are
determined from the binary decoded outputs of the classifier.

As the convolution masks in CNN classifier act as feature
detectors, optimal initialization of these kernels is crucial for the
design of an effective CNN classifier. The next subsection explains
the initialization and training of this CNN classifier.

2.4. Training a CNN classifier using genetic algorithms and back-
propagation algorithm

One of the major limitation of training a neural network using
steepest-descent algorithm is the possibility of solution getting
stuck in a local optimum. To overcome this problem, we use
genetic algorithms whose solutions evolve over generations. In
this work, we explore the use of genetic algorithms to identify the
optimum weight initialization of the CNN classifier discussed in
the previous section. A genetic algorithm (GA) chromosome of 64
real numbers is used to represent the weights of CNN classifier, in
which the first 63 real numbers are used to encode the three
convolution masks of size 1�21. The last real number is for the
seed value of the random number generator that initializes the
fully connected neural network classifier shown in Fig. 1. The
classification error of the CNN classifier initialized using a GA
chromosome after training with back-propagation algorithm for p1
epochs is used as the fitness value of the GA chromosome. The
CNN classifier is trained using back-propagation algorithm for a
small number of epochs (p1) to avoid over-fitting the data. As the
performance of a gradient-descent algorithm depends on the
initial (starting) weights of the neural network, the use of genetic
algorithm to explore different weight initializations may result in
finding weight initializations that would lead to a better solution
than random initialization. Thus, by exploring different basins
(weight initializations) using GA, we aim to find a solution that is
closer to global-optimum. The use of steepest descent algorithm,
to quickly find the local optimum in a given basin, reduces the
number of candidate solutions (initial weights) to be explored by
GA to find local optimum of basins. The next section discusses the
experimental results.
3. Experimental results

The proposed CNN classifier approach is implemented by cus-
tomizing the deep learning toolbox [68] to use linear masks and
using the native GA functionality available in Matlab. The range of
weights in convolution masks is in between �100 and 100. The
range of seed value is 0 to 5000. The GA with a population size of
20 (n in Fig. 1) is run for 5 generations considering a cross-over
probability of 0.8 and mutation probability of 0.01. Low mutation
probability is used in the GA-framework as GA relies on the con-
struction capability of crossover operator rather than on the dis-
ruptive power of mutation operator. The optimum range of these
parameters and GA configuration is determined empirically. By
expediting local-search using steepest-descent algorithm, we aim
to find an optimal solution even with a small number of GA-
generations and population size. The experimental results on
UCF50 dataset are discussed below.

3.1. UCF50 dataset

The proposed approach is evaluated on UCF50 dataset [69], that
consists of unconstrained realistic videos for 50 action categories
taken from Youtube. UCF50 dataset is selected due to its high
number of action categories and the availability of pre-computed
action bank features [70]. The use of pre-computed action bank
features in this work, facilitates the comparative study with
existing approaches. The evaluation is done using 5-fold cross-
validation. Here, k-fold cross-validation refers to splitting the
dataset into k splits say S1,S2,…,Sk followed by using split Si for
testing and the remaining (k–1) splits for training in Fold-i. This
process is repeated k times as i is varied from 1 to k. During fitness
computation of GA-chromosomes, the initialized CNN classifier is
trained using back-propagation algorithm in batch mode for 50
(p1) epochs. A batch-size of 10 is used for the first four folds and
8 for the fifth fold. The best and mean fitness value (indicating the
classification error in %) of population in each GA generation, for
the 5-folds of UCF50 dataset (on training data) is given in Table 1.

Table 2
Performance of candidate solutions (in %) generated from final GA population on test data using neural network classifier and extreme learning machine (ELM) classifier for
the 5-folds of UCF50 dataset. (Here Avg represents the average performance across all candidate solutions).

Sol. Neural network (NN) classifier Extreme learning machine (ELM) classifier

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

1 97.40 97.20 98.19 98.48 96.95 100.00 99.70 100.00 100.00 100.00
2 96.36 95.98 98.19 84.18 96.42 100.00 99.77 100.00 97.87 100.00
3 96.88 96.97 96.60 98.02 96.65 100.00 99.85 100.00 100.00 100.00
4 97.03 96.82 97.81 98.17 96.11 100.00 99.85 100.00 100.00 100.00
5 97.55 96.59 96.91 98.33 96.65 100.00 99.85 100.00 100.00 100.00
6 97.40 96.97 98.19 98.33 96.49 100.00 99.77 100.00 100.00 100.00
7 97.17 96.52 97.74 96.88 96.65 100.00 99.92 100.00 99.77 100.00
8 96.88 96.89 97.74 98.17 96.34 100.00 99.77 100.00 100.00 100.00
9 97.40 96.52 98.04 98.02 96.95 100.00 99.85 100.00 100.00 100.00

10 90.93 97.05 98.04 97.72 96.80 100.00 99.77 100.00 99.85 100.00
11 97.10 96.89 97.89 97.57 96.80 100.00 100.00 100.00 100.00 100.00
12 96.95 96.74 97.06 97.03 96.49 100.00 99.77 100.00 99.92 100.00
13 92.86 96.14 98.11 98.25 96.49 100.00 99.70 100.00 100.00 100.00
14 96.58 96.74 97.96 98.40 96.57 100.00 99.92 100.00 100.00 100.00
15 96.80 95.91 98.11 98.48 96.65 100.00 99.77 100.00 100.00 100.00
16 97.17 97.12 97.43 98.56 96.42 100.00 99.70 100.00 100.00 100.00
17 96.51 96.06 96.60 96.05 96.27 100.00 99.77 100.00 100.00 100.00
18 97.40 95.91 97.81 98.33 96.57 100.00 99.17 100.00 100.00 100.00
19 97.10 96.67 95.09 98.25 95.96 100.00 99.85 98.94 100.00 100.00
20 97.40 96.52 97.89 96.43 96.49 100.00 99.85 100.00 99.77 100.00

Avg 96.50 96.60 97.56 97.18 96.53 100.00 99.78 99.94 99.85 100.00

Table 3
Performance of the proposed classification system (in terms of # of misclassified
observations) using ELM classifier with various fusion functions for 5-fold cross-
validation of UCF50 dataset.

Data fold Number of
observations

Fusion function Majority
voting

Min Max Avg Prod Median

Fold-1 1345 0 0 0 0 0 0
Fold-2 1320 1 1 1 1 1 1
Fold-3 1325 0 0 0 0 0 0
Fold-4 1315 0 0 0 0 0 0
Fold-5 1312 0 0 0 0 0 0

Total 6617 1 1 1 1 1 1

Accuracy (in %)¼ 99.98 99.98 99.98 99.98 99.98 99.98

Table 1
Best and mean fitness (classification error in %) of GA population across generations for the 5 folds in UCF50 dataset.

Generation Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Best Mean Best Mean Best Mean Best Mean Best Mean

1 9.21 59.57 3.18 45.7 8.67 64.9 6.15 44.5 5.79 41.6
2 5.57 38.78 3.10 23.8 3.47 51.2 3.04 11.6 5.79 32.5
3 3.49 33.19 2.95 5.8 3.47 35.2 1.82 4.2 3.73 8.0
4 2.67 5.66 2.87 3.6 2.18 18.4 1.52 3.1 3.04 3.8
5 2.45 3.45 2.80 3.4 1.81 2.4 1.44 2.8 3.04 3.5

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212204
The consistent decrease in mean and best fitness value of the
population over generations for the 5-folds of UCF50 dataset
indicates the proper selection of GA parameters. This also confirms
the proper balance between exploration (due to mutation) and
exploitation (due to crossover). This completes step 3 of Fig. 1 and
produces 20 (n) candidate classifier initializations for each fold.

As mentioned in steps 5 and 6 of Fig. 1, the candidate solutions
are used to initialize the CNN classifiers and their classification
evidences are combined to assign the class labels. The perfor-
mance of the n CNN classifiers using neural network and extreme
learning machine (ELM) [71] classifiers is given in Table 2. From
the average accuracy given in the last row of this table, it can be
observed that extreme learning machine (ELM) classifier gives
better performance than neural network classifier. This could be
due to the better generalization capability of ELM over gradient-
based training algorithms.

As discussed in step 6 of Fig. 1, the n classifiers generated at the
end of step 5 are used as base classifiers in an ensemble model and
various fusion functions are considered to combine their classifi-
cation evidences. The performance on UCF50 dataset for various
folds with different fusion functions using ELM classifier is given in
Table 3. It can be observed that the performance remains the same
irrespective of the fusion-rule. This may be due to the small
deviation in performance of the classifiers used in the ensemble.
From Table 3, it can be observed that one observation gets
misclassified irrespective of the fusion rule. Thus, a classification
accuracy of 99.98% is achieved by the proposed approach for 5-fold
cross-validation of UCF50 dataset. The confusion matrix of the
proposed approach for UCF50 dataset is shown in Table 4. The
labels on the vertical axis indicate the true class labels and the
labels on the horizontal axis indicate the predicted class labels.

Table 4
Confusion matrix of the proposed approach for 5-fold cross validation of UCF50 dataset.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 205
The diagonal elements represent the correctly predicted test cases
and the non-diagonal elements represent the misclassified test
cases. It can be observed that one test instance of WalkingWithDog
is misclassified as RockClimbingIndoor by the proposed approach.

The performance of the CNN classifier when trained using
back-propagation algorithm (BPA), genetic algorithms (GA) and
both is given in Table 5. It can be observed that CNN classifiers
whose weights are initialized using GA and trained using back-
propagation algorithm gives better performance than the rest of
the approaches. As a set of solutions gets generated when GA is
used for training, the average performance of the resulting clas-
sifiers is reported in the table. Here, experiments for training using
only GA were conducted with population a size of 200 for 5 gen-
erations. Thus, training the CNN classifier initialized by GA with
BPA finds an optimal solution in less number of generations even
with a small population size. The performance of the proposed
classification framework using neural network (NN) and extreme
learning machine (ELM) classifiers is shown in Table 6. From the
table, it can be concluded that better performance can be achieved
using ELM classifier compared to NN classifier. From Table 3, it can
be concluded that the performance of the proposed approach
using an ensemble of CNN classifiers employing ELM classification
is 99.98% as one observation among 6617 test cases got mis-
classified. The performance of the proposed approach against
exiting techniques for 5-fold cross-validation on UCF50 dataset is
given in Table 7.
It can be observed from Table 7 that an accuracy of 94.1% is
achieved by Nicolas Ballas et al. in [77] by building an action
model from salient regions using spatio-temporal context and
weighted SVM. In the proposed approach, a classification accuracy
of 99.98% is achieved using action bank features. The improvement
in classification performance using the proposed classification
system is indicative of the effectiveness of the proposed hybrid
search approach to find optimum initial weights of the CNN
classifier. The next section analyzes the results presented in this
section.

3.2. Analysis

The two important issues in training a neural network using
back-propagation are: (1) over-fitting of training data, and (2) the
possibility of solution getting stuck in a local minimum. When the
neural network is over-fit due to excessive training, the error on
training set will be very low but on testing set will be high. In this
section, we analyze the classification error of CNN classifiers
immediately after weight initialization using GA, and also after
training the CNN classifier using back-propagation for 50 (p1)
epochs. The weights of a CNN classifier is represented by a circle in
a 2D plane with the x-axis representing the percentage of classi-
fication error on training data and y-axis representing the per-
centage of classification error on testing data.

The graph in Fig. 5(a) shows the classification error of weight
initializations explored by GA for the first fold of UCF50 dataset.

Table 6
Performance of the proposed classification framework (in %) using neural network (NN) and extreme learning machine (ELM) classifiers for 5-fold cross-validation of UCF50
dataset.

Classification methodology Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Proposed framework using
NN classifier

96.54 96.60 97.56 97.18 96.53 96.88

Proposed framework using
ELM classifier

100 99.78 99.94 99.85 100 99.91

Table 5
Performance of CNN classifier (in %) using back propagation algorithm (BPA), genetic algorithms (GA) and both for 5-fold cross-validation of UCF50 dataset.

Training approach Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

CNN classifier with only GA
(i.e., initialized using GA)

2.22 1.87 2.18 1.98 1.87 2.02

CNN classifier without GA
(i.e., trained using BPA)

86.02 87.50 18.26 80.30 23.39 59.19

CNN classifier with GA (using
GA and BPA)

96.54 96.60 97.56 97.18 96.53 96.88

Table 7
Performance comparison of the proposed approach with existing techniques for
5-fold cross-validation on UCF50 dataset.

Approach Accuracy (in %)

Sadanand and J. Corso [12] 57.9
Kliper-Gross et al. [72] 68.51
Shi Feng et al. [73] 71.7
LiMin Wang et al. [74] 71.7
H. Wang et al. [13] 75.7
Qiang Zhou et al. [75] 80.2
Ijjina Earnest et al. [76] 94.02
Nicolas Ballas et al. [77] 94.1

Proposed approach 99.98

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212206
Fig. 5(b) depicts the solutions in Fig. 5(a) trained with back-
propagation algorithm for 50 epochs. Each circle in these graphs
represents a CNN classifier whose weights are initialized using GA.
The location of the circle is determined by the classification error
of the CNN classifier for train and test data. The color of the circle
indicates when (the time) the weight initialization is explored
during the GA-cycles. As shown by the scale in the right-hand of
these figures, blue color is assigned to solutions (weight initi-
alizations) explored in the first generation and yellow color to the
solutions explored in the last generation. The same convention is
used to represent the solutions for Fold-2, Fold-3, Fold-4 and Fold-5
in Fig. 6. From the sub-figures in Figs. 5 and 6, it can be observed
that: (1) the proposed initialization of CNN classifiers using GA and
post-training using back-propagation algorithm significantly
improves the performance of classification system, (2) the location
of circles closer to 45° diagonal line indicates the existence of
similar local-patterns for actions in both training and testing data.
(This may be due to the use of k-fold cross-validation), (3) the high
concentration of circles in the top-right corner in graphs depicting
the solutions initialized using GA indicates the use of GA to
identify optimum initial weights of the classifier rather than the
final weights used for fitness computation, and (4) the high con-
centration of yellow circles closer in the bottom left corner (area
with low classification error) in graphs with solutions trained
using back-propagation algorithm demonstrates the improvement
of solutions generated by GA over generations. The most likely
reasons for misclassification of WalkingWithDog observation in
Fig. 7 by the proposed approach are the large variation in illumi-
nation conditions, change in scale and the existence of camera
shake. The predicted top-5 class labels for this observation using
the proposed approach with various fusion rules is given in
Table 8. It can be observed that 100% prediction accuracy is
achieved by the proposed approach if top-2 predictions are used
for performance evaluation. The feasibility to extend this approach
to solve problems in other domains, is demonstrated by evaluating
this approach for handwritten character recognition on MNIST
dataset.

3.3. MNIST dataset

The recognition of hand-written characters using computer
vision algorithms is a challenging task with practical applications.
The MNIST dataset [25] is one of the standard benchmark used to
compare performance of different approaches. The proposed
approach is evaluated on MNIST dataset, using GA with a popu-
lation size of 10 (n) for 3 generation. The optimum size of con-
volution and sub-sampling masks is empirically determined to be
5�5 and 1�1, respectively. The CNN classifier is trained using
back propagation algorithm in batch mode with a batch size of 10
for 10 (p1) epochs. The average fitness value of GA population
decreases from 79.45 in the first generation to 14.56 in the last
generation, suggests the convergence of GA.

The performance of the CNN classifier trained using back pro-
pagation algorithm (BPA), genetic algorithms (GA) and both is
given in Table 9. The table shows the performance of CNN classifier
without GA (i.e., trained using BPA) against the average perfor-
mance of solutions generated with GA (i.e., using GA and BPA). As
the best performance and standard deviation of solutions gener-
ated by with GA training approach are 96.92% and 22.91, respec-
tively, it can be concluded that CNN classifiers initialized by
genetic algorithms and trained with back propagation algorithm
gives better performance than the rest of the approaches. The
performance of the proposed classification framework using
neural network (NN) and extreme learning machine (ELM)

Table 8
Top 5 class labels predicted by the proposed approach using various fusion rules, for the misclassified WalkingWithDog observation. (Here, RCI denotes RockClimbingIndoor,
WWD represents WalkingWithDog, P denotes Punch, L denotes Lunges, D represents Diving, K denotes Kayaking and HR denotes HorseRiding action).

Top Fusion-rule

Min Max Avg Prod Median

1 RCI RCI RCI RCI RCI
2 WWD WWD WWD WWD WWD
3 P L P P P
4 L P L L L
5 D K HR HR HR

Fig. 5. Solutions explored by the proposed approach for Fold-1 of UCF50 dataset: (a) after initialization using GA chromosomes and (b) after training the classifier using back-
propagation algorithm for p1 epochs. Best viewed in color. (a) Solutions corresponding to weight initialization using GA chromosome, and (b) Solutions in (a) after training
with back-propagation algorithm.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 207

Fig. 6. Solutions explored by the proposed approach for Fold-2, Fold-3, Fold-4 and Fold-5 of UCF50 dataset. The sub-figures (a), (b) correspond to Fold-2; (c), (d) are for Fold-3;
(e), (f) correspond to Fold-4 and (g), (h) are for Fold-5. (Here, BP represents back-propagation algorithm and Sols represent solutions). Best viewed in color. (a) Sols. with
weight initialization using GA, (b) Sols. in (a) after training with BP algorithm, (c) Sols. with weight initialization using GA, (d) Sols. in (c) after training with BP algorithm,
(e) Sols. with weight initialization using GA, (f) Sols. in (e) after training with BP algorithm, (g) Sols. with weight initialization using GA, (h) Sols. in (g) after training with BP
algorithm.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212208

Fig. 7. Misclassified UCF50 WalkingWithDog observation. (Frames of ‘v_WalkingWithDog_g08_c02.avi’ in UCF50 dataset [69]).

Table 9
Performance of CNN classifiers using back propagation algorithm (BPA), genetic
algorithms (GA) and both for MNIST dataset.

Training approach Performance (in %)

CNN classifier with only GA (i.e., initialized using GA) 12.58
CNN classifier without GA (i.e., trained using BPA) 91.0
CNN classifier with GA (using GA and BPA) 87.85

Table 10
Performance of the proposed classification framework using neural network (NN)
and extreme learning machine (ELM) classifiers for MNIST dataset.

Classification methodology Performance (in %)

Proposed framework using NN classifier 87.85
Proposed framework using ELM classifier 96.74
Proposed approach with ensemble of classifiers 97.9

Table 11
Performance comparison of the proposed approach with existing techniques on
MNIST dataset.

Approach Masks count, size Layers Accuracy (in %)

Convolutional net LeNet-5 [25] 22, 5�5 7 99.0
Proposed approach 3, 5�5 3 97.9

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 209
classifiers is given in Table 10. The performance of ensemble of
CNN classifiers using ELM classification is also shown in the last
row of this table. The performance of the proposed and existing
approaches for character recognition on MNIST dataset is given in
Table 11. The table also shows the number of layers with trainable
weights, the size and count of masks in the CNN architecture. From
the table, it can be observed that the proposed approach uses less
number of layers, masks and training epochs to achieve compar-
able performance with the existing approach. The performance
can be further improved by considering deeper architectures with
more number of masks. The next section analyzes the solutions
explored by the proposed approach for MNIST dataset.

3.4. Analysis

We visualize the performance of solutions explored by the
proposed approach during the GA cycles, to validate the
improvement of candidate solutions (GA population) over gen-
erations. The solutions explored by the proposed approach by
initializing the weights using GA and training the generated clas-
sifiers using back-propagation algorithm for p1 epochs for MNIST
dataset are shown in Fig. 8(a) and (b), respectively. Each circle in
these graphs correspond to a CNN classifier, with the error for
training and testing data used as x and y coordinates of the circle
and the time at which the solution is generated during the GA
cycles determines the color of the circle. From Fig. 8(b), it can be
observed that the classification error of the solutions initialized
using GA and trained using back propagation algorithms decreases
significantly with generations. The next section discusses the time
complexity of this approach and its suitability for use in real-time
applications.

3.5. Computational complexity

The existing approach uses genetic algorithms and training of
convolutional neural network (CNN) classifier using back propa-
gation algorithm, which can be parallelized. By parallel evaluation
of candidate solutions (population) in genetic algorithms and use
of efficient GPU-based CNN implementation (like cuDNN [78]) to
train CNN classifiers for p1 epochs results in a significant reduction
in computation time. In this work, the CNN classifiers are trained
for a small number of epochs (p1) i.e., 50 epochs for UCF50 and 10
epochs for MNIST dataset. Several efficient multi-GPU imple-
mentations of CNN were proposed in the last few years like Ber-
keley's Caffe, Torch and Theano. Several browser-based user-
friendly platforms like NVIDIA's DIGITS, Google's TensorFlow and
Microsoft's Azure are proposed to aid the design and deployment
of CNN classifiers for real-time applications. As inferencing is less
expensive than training a deep neural network, trained CNN
classifiers are used in many online systems like mobile applica-
tions for speech processing, image recognition, etc. Thus, the
proposed approach generates a set of optimized CNN classifiers,
which could then be deployed for real-time online application. The
computational complexity of action back features restrict the
feasibility to use this approach for real-time human action
recognition. The next section gives the conclusions of this work.
4. Conclusion and future work

In this paper, we proposed a deep learning algorithm inspired
by hybrid search approach of evolutionary and classical algo-
rithms. As the performance of a neural network classifier (after
training) depends on its weight initialization, we aim to optimize
the initial weights using a GA framework. The proposed approach
finds the weights of a convolutional neural network classifier that
is neither overfit for training data nor stuck in a local minimum.
The fusion across models identified using GA framework aims to
overcome the limitations of individual models, by combining
evidences across classifiers. Experimental studies on UCF50 data-
set to recognize human actions from action bank features suggests
that the proposed approach achieves a recognition accuracy of
99.98%. The future work will consider other spatio-temporal fea-
tures like exmoves [79].

Fig. 8. Solutions explored by the proposed approach for MNIST dataset: (a) After initialization using GA chromosomes, and (b) After training the classifiers using back-
propagation algorithm for p1 epochs. Best viewed in color. (a) Solutions corresponding to weight initialization using GA chromosome, and (b) Solutions in (a) after training
with back-propagation algorithm.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212210
Conflict of interest statement

None declared.
References

[1] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gra-
dient descent is difficult, IEEE Trans. Neural Netw. 5 (2) (1994) 157–166.

[2] Y. Lecun, C. Cortes, The MNIST database of handwritten digits. URL 〈http://
yann.lecun.com/exdb/mnist/ 〉.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M.S. Bernstein, A.C. Berg, L. Fei-Fei, Imagenet large scale
visual recognition challenge, CoRR abs/1409.0575.

[4] S.E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, c. Gülçehre, R. Memisevic,
P. Vincent, A. Courville, Y. Bengio, R.C. Ferrari, M. Mirza, S. Jean, P.-L. Carrier,
Y. Dauphin, N. Boulanger-Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin,
J.-P. Raymond, G. Desjardins, R. Pascanu, D. Warde-Farley, A. Torabi, A. Sharma,
E. Bengio, M. Côté, K. R. Konda, Z. Wu, Combining modality specific deep
neural networks for emotion recognition in video, in: Proceedings of the 15th
ACM International Conference on Multimodal Interaction, ICMI '13, ACM, New
York, NY, USA, 2013, pp. 543–550. http://dx.doi.org/10.1145/2522848.2531745.

[5] J. Aggarwal, M. Ryoo, Human activity analysis: a review, ACM Comput. Surv. 43
(3) (2011) 1–43, http://dx.doi.org/10.1145/1922649.1922653.

[6] D. Weinland, R. Ronfard, E. Boyer, A survey of vision-based methods for action
representation, segmentation and recognition, Comput. Vis. Image Underst.
115 (2) (2011) 224–241, http://dx.doi.org/10.1016/j.cviu.2010.10.002.

[7] M.B. Holte, C. Tran, M.M. Trivedi, T.B. Moeslund, Human action recognition
using multiple views: a comparative perspective on recent developments, in:
Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior
Understanding, J-HGBU '11, ACM, New York, NY, USA, 2011, pp. 47–52. http://
dx.doi.org/10.1145/2072572.2072588.

[8] J.M. Chaquet, E.J. Carmona, A. Fernández-Caballero, A survey of video datasets
for human action and activity recognition, Comput. Vis. Image Underst. 117 (6)
(2013) 633–659.

[9] P. Foggia, G. Percannella, A. Saggese, M. Vento, Recognizing human actions by a
bag of visual words, in: Proceedings of the 2013 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), 2013, pp. 2910–2915. http://dx.doi.
org/10.1109/SMC.2013.496.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212 211
[10] I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, Learning realistic human
actions from movies, In: Proceedings of the 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2008, pp. 1–8.

[11] N. Dalal, B. Triggs, C. Schmid, Human detection using oriented histograms of
flow and appearance, In: Proceedings of the 9th European Conference on
Computer Vision - Volume Part II, ECCV 06, Springer-Verlag, Berlin, Heidel-
berg, 2006, pp. 428–441.

[12] S. Sadanand, J. J. Corso, Action bank: A high-level representation of activity in
video, in: Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012, pp. 1234–1241.

[13] H. Wang, A. Klaser, C. Schmid, C.-L. Liu, Action recognition by dense trajec-
tories, in: Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011, pp. 3169–3176.

[14] X. Liang, L. Lin, L. Cao, Learning latent spatio-temporal compositional model
for human action recognition, In: ACM International Conference on Multi-
media (ACM MM), 2013, pp. 263–272.

[15] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828,
http://dx.doi.org/10.1109/TPAMI.2013.50.

[16] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, In: Advances in Neural Information Processing
Systems (NIPS 2012), 2012, pp. 1097–1105.

[17] R.B. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, CoRR abs/1311.2524.

[18] S. Lawrence, C. Giles, A.C. Tsoi, A. Back, Face recognition: a convolutional
neural-network approach, IEEE Trans. Neural Netw. 8 (1) (1997) 98–113, http:
//dx.doi.org/10.1109/72.554195.

[19] M. Matsugu, K. Mori, Y. Mitari, Y. Kaneda, Subject independent facial expres-
sion recognition with robust face detection using a convolutional neural
network, Neural Netw. 16 (5–6) (2003) 555–559.

[20] P. Le Callet, C. Viard-Gaudin, D. Barba, A convolutional neural network
approach for objective video quality assessment, IEEE Trans. Neural Netw. 17
(5) (2006) 1316–1327, http://dx.doi.org/10.1109/TNN.2006.879766.

[21] S. Ji, W. Xu, M. Yang, K. Yu, 3d convolutional neural networks for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35 (1) (2013)
221–231.

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-
scale video classification with convolutional neural networks, In: Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1725–1732. http://dx.doi.org/10.1109/CVPR.2014.223.

[23] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, M. Paluri, C3D: generic features
for video analysis, CoRR abs/1412.0767.

[24] Y. LeCun, K. Kavukcuoglu, C. Farabet, Convolutional networks and applications
in vision, in: Proceedings of 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), 2010, pp. 253–256. http://dx.doi.org/10.1109/ISCAS.2010.
5537907.

[25] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[26] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, A. Baskurt, Sequential deep
learning for human action recognition, In: Proceedings of the Second Inter-
national Conference on Human Behavior Unterstanding, HBU'11, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 29–39.

[27] K. Wang, X. Wang, L. Lin, M. Wang, W. Zuo, 3d human activity recognition with
reconfigurable convolutional neural networks, in: Proceedings of the ACM
International Conference on Multimedia, MM '14, ACM, New York, NY, USA,
2014, pp. 97–106. http://dx.doi.org/10.1145/2647868.2654912.

[28] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, L. Zhang, A deep structured model
with radius-margin bound for 3d human activity recognition, Int. J. Comput.
Vis., 2015, pp. 1–18. http://dx.doi.org/10.1007/s11263-015-0876-z.

[29] G. Chéron, I. Laptev, C. Schmid, P-CNN: pose-based CNN features for action
recognition, CoRR abs/1506.03607 URL arxiv.org/abs/1506.03607.

[30] V. Veeriah, N. Zhuang, G. Qi, Differential recurrent neural networks for action
recognition, CoRR abs/1504.06678. URL arxiv.org/abs/1504.06678.

[31] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action
recognition in videos, CoRR abs/1406.2199. URL arxiv.org/abs/1406.2199.

[32] Y. Bengio, O. Delalleau, On the expressive power of deep architectures, in:
Proceedings of the 22nd International Conference on Algorithmic Learning
Theory, ALT'11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 18–36.

[33] Y. Bengio, Learning deep architectures for ai, Found. Trends Mach. Learn. 2 (1)
(2009) 1–127, http://dx.doi.org/10.1561/2200000006.

[34] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U.D. Montral, M. Québec,
Greedy layer-wise training of deep networks, In: In NIPS, MIT Press, 2007.

[35] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief
nets, Neural Comput. 18 (7) (2006) 1527–1554.

[36] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for
training deep neural networks, J. Mach. Learn. Res. 10 (2009) 1–40.

[37] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS'10). Society for Artificial Intelligence and
Statistics, 2010.

[38] L. Prechelt, Early stopping – but when? In: Neural Networks: Tricks of the
Trade, Lecture Notes in Computer Science, vol. 1524, Springer-Verlag, 1997,
pp. 55–69, Chapter 2.

[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Drop-
out: a simple way to prevent neural networks from overfitting, J. Mach. Learn.
Res. 15 (1) (2014) 1929–1958.
[40] G.E. Dahl, T.N. Sainath, G.E. Hinton, Improving deep neural networks for lvcsr
using rectified linear units and dropout, in: Proceedings of the 2013 Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2013, pp. 8609–8613.

[41] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11
(2010) 625–660.

[42] I. Sutskever, J. Martens, G.E. Dahl, G.E. Hinton, On the importance of initi-
alization and momentum in deep learning, In: Proceedings of the 30th
International Conference on Machine Learning (ICML-13), JMLR Proceedings,
vol. 28, JMLR.org, 2013, pp. 1139–1147.

[43] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (2012) 281–305.

[44] E.I. Chang, R. Lippmann, Using genetic algorithms to improve pattern classi-
fication performance, in: R. Lippmann, J.E. Moody, D.S. Touretzky (Eds.), Pro-
ceedings of Advances in Neural Information Processing Systems (NIPS),
November 26–29, Morgan Kaufmann, Denver, Colorado, USA, 1990,
pp. 797–803.

[45] D. Decker, J. Hintz, A genetic algorithm and neural network hybrid classifi-
cation scheme, in: Proceedings of 9th AIAA Computers in Aerospace Con-
ference, AIAA, 1993, pp. 473–475.

[46] S.A. Harp, T. Samad, A. Guha, Towards the genetic synthesis of neural network,
in: Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp. 360–369.

[47] J. Schaffer, R.A. Caruana, L.J. Eshelman, Using genetic search to exploit the
emergent behavior of neural networks, Phys. D: Nonlinear Phenom. 42 (1–3)
(1990) 244–248 http://dx.doi.org/10.1016/0167-2789(90)90078-4.

[48] D.J. Montana, L. Davis, Training feedforward neural networks using genetic
algorithms, in: Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI'89), vol. 1, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1989, pp. 762–767.

[49] S. Ding, H. Li, C. Su, J. Yu, F. Jin, Evolutionary artificial neural networks: a
review, Artif. Intell. Rev. 39 (3) (2013) 251–260, http://dx.doi.org/10.1007/
s10462-011-9270-6.

[50] J.R. Koza, J.P. Rice, Genetic generation of both the weights and architecture for
a neural network, in: International Joint Conference on Neural Networks
(IJCNN-91), vol. ii, 1991, pp. 397–404 vol.2. http://dx.doi.org/10.1109/IJCNN.
1991.155366.

[51] F. Gruau, Genetic synthesis of boolean neural networks with a cell rewriting
developmental process, in: International Workshop on Combinations of
Genetic Algorithms and Neural Networks (COGANN-92), 1992, pp. 55–74.
http://dx.doi.org/10.1109/COGANN.1992.273948.

[52] R.J. Collins, D.R. Jefferson, An artificial neural network representation for
artificial organisms, in: Parallel Problem Solving from Nature, Springer-Verlag,
1990, pp. 259–263.

[53] S. Bornholdt, D. Graudenz, General asymmetric neural networks and structure
design by genetic algorithms, Neural Netw. 5 (2) (1992) 327–334 http://dx.doi.
org/10.1016/S0893-6080(05)80030-9.

[54] J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and
neural networks: a survey of the state of the art, in: International Workshop
on Combinations of Genetic Algorithms and Neural Networks (COGANN-92),
1992, pp. 1–37. http://dx.doi.org/10.1109/COGANN.1992.273950.

[55] X. Yao, Evolving artificial neural networks, Proc. IEEE 87 (9) (1999) 1423–1447,
http://dx.doi.org/10.1109/5.784219.

[56] X. Yao, A review of evolutionary artificial neural networks, Int. J. Intell. Syst. 4
(1993) 539–567.

[57] O.E. David, I. Greental, Genetic algorithms for evolving deep neural networks,
in: Proceedings of the 2014 Conference Companion on Genetic and Evolu-
tionary Computation Companion, GECCO Comp '14, ACM, New York, NY, USA,
2014, pp. 1451–1452. http://dx.doi.org/10.1145/2598394.2602287.

[58] R. Oullette, M. Browne, K. Hirasawa, Genetic algorithm optimization of a
convolutional neural network for autonomous crack detection, in: Congress
on Evolutionary Computation (CEC2004), vol. 1, 2004, pp. 516–521.

[59] L.-O. Fedorovici, R.-E. Precup, F. Dragan, C. Purcaru, Evolutionary optimization-
based training of convolutional neural networks for ocr applications, in: 17th
International Conference on System Theory, Control and Computing (ICSTCC),
2013, pp. 207–212.

[60] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, Gsa: a gravitational search
algorithm, Inf. Sci. 179 (13) (2009) 2232–2248.

[61] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: IEEE International
Conference on Neural Networks, vol. 4, Perth, Australia, IEEE Service Center,
Piscataway, NJ, 1995, pp. 1942–1948.

[62] J. Koutník, J. Schmidhuber, F. Gomez, Lecture Notes in Computer Science, in:
A. del Pobil, E. Chinellato, E. Martinez-Martin, J. Hallam, E. Cervera, A. Morales
(Eds.), From Animals to Animats 13, Lecture Notes in Computer Science, vol.
8575, Springer International Publishing, 2014, pp. 260–269.

[63] F. Gomez, J. Schmidhuber, R. Miikkulainen, Accelerated neural evolution
through cooperatively coevolved synapses, J. Mach. Learn. Res. 9 (2009)
937–965.

[64] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, MI, USA, 1975. URL 〈http://books.google.com/books?
id¼YE5RAAAAMAAJ〉.

[65] J. Bascom, Darwin's theory of the origin of species, Am. Theol. Rev. 3 (1871)
349–379.

[66] D.E. Goldberg, Genetic algorithms, Pearson Education, India, 2006.

E.P. Ijjina, K.M. Chalavadi / Pattern Recognition 59 (2016) 199–212212
[67] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, 1st Ed., Chap-
man & Hall/CRC, 2012.

[68] R.B. Palm, Prediction as a candidate for learning deep hierarchical models of
data (Master's thesis). Technical University of Denmark, Asmussens Alle,
Denmark, 2012.

[69] K.K. Reddy, M. Shah, Recognizing 50 human action categories of web videos,
Mach. Vis. Appl. 24 (5) (2012) 971–981, http://dx.doi.org/10.1007/
s00138-012-0450-4.

[70] Action bank: a high-level representation of activity in video, URL 〈http://www.
cse.buffalo.edu/� jcorso/r/actionbank/〉, accessed on: 2015-08-08.

[71] G.-B. Huang, Q.-Y. Zhu, C.K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1–3) (2006) 489–501.

[72] O. Kliper-Gross, Y. Gurovich, T. Hassner, L. Wolf, Motion interchange patterns
for action recognition in unconstrained videos, In: Proceedings of the 12th
European Conference on Computer Vision(ECCV) – volume Part VI, ECCV'12,
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 256–269.

[73] F. Shi, E. Petriu, R. Laganiere, Sampling strategies for real-time action recog-
nition, In: Proceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2013, pp. 2595–2602.
[74] L. Wang, Y. Qiao, X. Tang, Motionlets: Mid-level 3d parts for human motion
recognition, in: Proceedings of the 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013, pp. 2674–2681.

[75] Q. Zhou, G. Wang, K. Jia, Q. Zhao, Learning to share latent tasks for action
recognition, in: Proceedings of the 2013 IEEE International Conference on
Computer Vision (ICCV), 2013, pp. 2264 –2271.

[76] E.P. Ijjina, C. Mohan, Human action recognition based on recognition of linear
patterns in action bank features using convolutional neural networks, In:
Proceedings of the 13th International Conference on Machine Learning and
Applications (ICMLA), 2014, pp. 178–182. http://dx.doi.org/10.1109/ICMLA.
2014.33.

[77] N. Ballas, Y. Yang, Z.-Z. Lan, B. Delezoide, F. Preteux, A. Hauptmann, Space-time
robust representation for action recognition, In: The IEEE International Con-
ference on Computer Vision (ICCV), 2013.

[78] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E.
Shelhamer, cudnn: Efficient primitives for deep learning, CoRR abs/1410.0759.
URL arxiv.org/abs/1410.0759.

[79] D. Tran, L. Torresani, EXMOVES: classifier-based features for scalable action
recognition, CoRR abs/1312.5785.
Earnest Paul Ijjina received his Masters in Computer Science and Engineering from Indian Institute of Technology Kharagpur in 2007 and is currently pursuing his Ph.D in
Computer Science and Engineering at Indian Institute of Technology, Hyderabad. Previously, he was an IT manager for four years at Morgan Stanley and an assistant professor
for one year. His research interests include computer vision, video content analysis and deep learning.
Dr. C. Krishan Mohan received the Ph.D. Degree in Computer Science and Engineering from Indian Institute of Technology, Madras, India in 2007. He received the Master of
Technology in system analysis and computer applications from National Institute of Technology, Surathkal, India in 2000. He received the Master of Computer Applications
degree from S.J. College of Engineering, Mysore, India in 1991 and the Bachelor of Science Education (B.Sc. Ed.) degree from Regional Institute of Education in 1988. He is
currently associate professor with the Department of Computer Science and Engineering, Indian Institute of Technology, Hyderabad, India. His research interests include
video content analysis, pattern recognition, and neural networks.

