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This paper proposes an adaptive unsupervised scheme that could find diverse applications in pattern

recognition as well as in computer vision, particularly in color image segmentation. The algorithm,

named Ant Colony–Fuzzy C-means Hybrid Algorithm (AFHA), adaptively clusters image pixels viewed

as three dimensional data pieces in the RGB color space. The Ant System (AS) algorithm is applied for

intelligent initialization of cluster centroids, which endows clustering with adaptivity. Considering

algorithmic efficiency, an ant subsampling step is performed to reduce computational complexity while

keeping the clustering performance close to original one. Experimental results have demonstrated

AFHA clustering’s advantage of smaller distortion and more balanced cluster centroid distribution over

FCM with random and uniform initialization. Quantitative comparisons with the X-means algorithm

also show that AFHA makes a better pre-segmentation scheme over X-means. We further extend its

application to natural image segmentation, taking into account the spatial information and conducting

merging steps in the image space. Extensive tests were taken to examine the performance of the

proposed scheme. Results indicate that compared with classical segmentation algorithms such as mean

shift and normalized cut, our method could generate reasonably good or better image partitioning,

which illustrates the method’s practical value.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Image segmentation refers to the process in which spatially
connected pixels that share certain visual characteristics are
assigned with the same label. The major goal is to partition an
input image into multiple segments so that objects and bound-
aries could be located and the image could become more
meaningful and easier to analyze [43]. In image processing
[1–7] and computer vision [8–17], segmentation has long been
considered one of the most important problems since it plays an
indispensable preliminary processing role for semantic analysis
and many other advanced tasks [18–24]. Indeed, accurately
segmenting out objects or regions that appeal to the human
vision is a significant issue. Though much emphasis has been put
on this topic and many approaches have been proposed, it is still
challenging to segment natural images due to their inherent
complexity [25]. The simplest case might be the segmentation of
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an image with distinct and homogeneous foreground objects. In
this case, techniques such as thresholding and edge detection
using gradient information could be sufficient, even though they
are relatively simple. Recent researches have also concentrated on
applying thresholding with intelligent algorithms like ant colony
optimization (ACO) and fuzzy measures [26,27] so that more
adaptive and accurate decisions could be made to achieve better
results. Malisia and Tizhoosh [26] proposed an image binary
thresholding method in which ant pheromone information is
added to the original image data using an ACO-based approach.
The whole dataset is then clustered with the K-means algorithm.
This is essentially a dimension-increasing method in the feature
space and only works well with grayscale images containing
distinct foreground objects. Han and Shi [28] proposed a fuzzy Ant
System pixel clustering method for image segmentation. In their
paper, three kinds of features including the grayscale value, the
gradient value and the pixel neighborhood information are
extracted to form a 3-D vector for each pixel. They define each
ant’s membership degree to a clustering center as the probability
of going in that direction, calculated according to the AS
algorithm. The segmentation performance depends largely on
the image feature extraction method and the algorithm does not
especially seek for very compact clustering results in the feature
space. The convergence process is very fast and only one round of
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iteration is performed, according to [53]. The initial clustering
centers are manually selected by inspecting the image grayscale
histogram, which could be troublesome since some images might
not contain significant histogram peaks.

The above two methods assume that the input images mostly
contain uniformly colored objects, which is typically not true for
natural color images. The existence of object texture, noise and
shading all contribute to the variation of object colors. Given
limited, low level pixel-wise features, one commonly finds it hard
to directly extract foreground objects with high accuracy.
Recently, there is a widely held opinion which describes the
partitioning of an image as an inherently hierarchical process. In
other words, it is more appropriate to think of returning a tree
structure corresponding to a hierarchical partition instead of a
single ‘‘flat’’ partition [15]. Some typical examples include the
family of region merging based methods in which segmentation
algorithms that were originally proposed to deal directly with
natural color images have also served preprocessing roles. For
example, mean shift (MS) is a well known non-parametric feature
space analysis algorithm that searches for local maximal density
points and then groups all the data into the clusters defined by
these maximal density points. Comaniciu and Meer [29] further
investigated this algorithm and implemented it in color image
segmentation. Since then, MS has been well known for its good
segmentation performance. This approach was also utilized
by Tao, Jin and Zhang [30] to first over-segment a natural image
instead of directly generating a segmentation result, to be
followed by a region merging process with normalized cut (Ncut).
This could achieve more accurate segmentation results than pixel-
wise Ncut. Many other region merging based methods applied
watershed algorithm as an image simplification operation [31,32],
with a tendency to generate over-segmented results.

The concept behind this hierarchical segmentation strategy is
quite straightforward: a pre-segmented region allows many more
features to be defined for image analysis than a mere single image
pixel. In addition to the mean vector, other such region-based
features include boundary smoothness, boundary length, bound-
ary gradient, region pixel number, region geometry, spatial
topological relationships among regions. The combination of
these features allows more versatile and powerful methods to
be developed to achieve better segmentation. In addition, people
find that fewer inputs sometimes could bring better and more
accurate results using the same algorithm [30]. Finally, region
merging based methods tend to require significantly lower
computational complexity than pixel-wise methods, since an
image often contains much fewer regions than pixels. Shi stated in
his paper that, with region number much smaller than total pixel
number [15], exhaustive search in the discrete domain for cost
function minimization became feasible.

A relevant issue that should not be over looked is that the pre-
segmentation stage, viewed as an image simplification step,
should be as precise as possible. Despite such operation’s task-
oriented nature, people under many circumstances would want to
minimize false classification while optimizing region partitioning
and uniformity. Although one can partition an image into very
fine regions so that the chance of false classification is small, such
strategy could bring extra computation complexity to the
subsequent operations and risk losing local information that
might be otherwise helpful. Based on different objectives and
needs, people have designed various image pre-segmentation
methods. The idea of superpixel was originally developed by Ren
and Malik using normalized cut to learn a classification model for
segmentation [44], whereas MS and watershed algorithm could
also serve similar preprocessing roles. Other than these, FCM has
long been a popular algorithm in computer vision and pattern
recognition for its clustering validity and simplicity of imple-
mentation. FCM-based pixel clustering tends to group pixels
together according to similarities in the feature space. Given fixed
number and distribution of clusters, segmented regions are
decided depending on the pixel similarity and spatial connectivity
of the image. Unlike superpixel, FCM does not have very strong
constraint on the segmented region area, meaning that if an
image contains large homogeneous area, it is likely to be
segmented out as a whole. Compared with MS, FCM tends to
preserve more details along segmented region boundaries,
especially texture boundaries, which could be helpful for further
texture analysis. Although FCM is an excellent image preproces-
sing tool, its implementation often faces two unavoidable
initialization problems:
1.
 How should we decide the cluster number?

2.
 How should the initial centroids be properly distributed?
These problems have their unneglectable impacts on the
segmentation quality. While the first issue could largely affect
segment area and region tolerance for feature variance, the
second one affects the cluster compactness and classification
accuracy. In this paper, we propose a novel ACO-based scheme
called AFHA to address these two problems. With the help of AS,
we achieve adaptive cluster initialization and improved clustering
structure. To extend its application to image segmentation, we
also consider the spatial connectivity issue of pixel clustering and
propose relevant solutions. We will show that, even with simple
postprocessing, our method could generate reasonable segmenta-
tion results.

The rest of the paper is organized as follows. Section 2 will
summarize previous works that are most related to our research.
Section 3 will describe our proposed AFHA while Section 4 will
give experimental results and both qualitative and quantitative
evaluation. Finally, conclusions will be made in Section 5.
2. Background

2.1. The Fuzzy C-means algorithm

Data clustering is the process of dividing data elements into
classes or clusters so that elements in the same class are as similar
as possible, and those in different classes are as dissimilar as
possible. In fuzzy clustering, data elements can belong to more
than one cluster, and associated with each element is a set of
membership levels. These indicate the strength of the association
between that data element and a particular cluster. One of the
most widely used fuzzy clustering algorithms is the Fuzzy C-
means. Introduced by Ruspini [34] and improved by Dune and
Bezdek [35,36], the FCM algorithm attempts to partition a finite
dataset X={x1,y, xN} into a collection of M fuzzy clusters with
respect to some given criterion [37], which is essentially a Hill-
Climbing technique. Let m be the exponential weigh of member-
ship degree, mA ½1;1Þ. The objective function Wm of FCM is
defined as:

WmðU;CÞ ¼
XN

i ¼ 1

XM
j ¼ 1

ðmjiÞ
m
ðdjiÞ

2; ð1Þ

where mji is the membership degree of xi to cj and dji is the
distance between xi and cj. Let U i ¼ ðm1i;m2i; . . . ;mMiÞ

T. Then
U ¼ ðU1;U2; . . . ;UNÞ is the membership degree matrix and
C ¼ fc1; c2; . . . ; cMg is the set of cluster centroids. Wm indicates
the compactness and uniformity degree of clusters. Generally, a
smaller Wm reflects a more compact cluster set.
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Since there is no close form solution, the minimization of Wm

is an iteration process mathematically described as follows:
(1)
 Initialize m, M and initial cluster centroid set Cð0Þ. Set the
iteration terminating threshold e to a small positive value and
iteration time q to zero. Calculate Uð0Þ according to Cð0Þ with
the following equation:

mji ¼ 1=
XM
k ¼ 1

ðdji=dkiÞ
2=ðm�1Þ Ji ¼f ð2Þ

where Ji ¼ fjj1r jrM; dij ¼ 0g,
P
jA Ji

mji ¼ 1. Notice that if dji ¼ 0,

then mji ¼ 1 and set other membership degrees of this pixel to
zero.
(2)
 Calculate Cðqþ1Þ according to UðqÞ with the following equation:

cj ¼

PN
i ¼ 1ðujiÞ

mxiPN
i ¼ 1ðujiÞ

m
ð3Þ

Calculate Uðqþ1Þ according to Cðqþ1Þ with Eq. (2).
(3)

(4)
 Compare Uðqþ1Þ with UðqÞ. If JUðqþ1Þ

�UðqÞJre, stop iteration.
Otherwise, go to (2).
2.2. The ant system

Inspired by ant behaviors, Marco Dorigo et al. in 1991
proposed the first ant colony algorithm (ACA), Ant System, and
successfully applied it in optimizing the solutions of traveling
salesman problem [38]. AS exhibited many advantages in solving
discrete optimization problems. In addition it afterward inspired a
variety of improved ant colony algorithms [39]. Path construction
and pheromone update are two major steps of AS. In the path
construction step, let path (i, j) denote the path which connects
node i and j. When going from i to j, an ant chooses its path with
the following probability:

pij ¼
phaijðtÞZ

b
ijðtÞP

sASphaisðtÞZ
b
isðtÞ

jAS; ð4Þ

where ZijðtÞ ¼ 1=dij stands for the heuristic information and
dij ¼ Jxi�xjJ denotes the distance between i and j. The xi can be
a value or a vector that is characterized by node i. Function phijðtÞ

represents the pheromone concentration on path (i, j) at time t.
The S is the set of all available paths.

In the pheromone update step, pheromone concentration on
every path is updated according to the following equation:

phijðt
0Þ ¼ rphijðtÞþDphij; ð5Þ

where r represents the evaporating degree of pheromone
concentration with the elapse of time. Dphij is the increase of
pheromone concentration on path (i, j) after one cycle:

Dphij ¼
XN

k ¼ 1

Dphk
ij; ð6Þ

where Dphk
ij is the pheromone concentration left on path (i, j) by

the kth ant.
3. Proposed approach

3.1. The ant colony–fuzzy C-means hybrid algorithm

The iterative optimization of FCM is essentially a local
searching method, which is likely to fall onto a local minimum
point and is very sensitive to the initialization condition of cluster
centers and centroid number. Usually, initialization is carried out
based on certain experience. Clustering result depends largely on
whether parameters have been properly chosen. When con-
fronted with massive data of high dimensions, it is hard to both
manually and properly set parameters without repetitive experi-
ments, which is a laborious operation likely to generate sub-
optimized image segmentation results. In this paper, we apply
improved Ant System to initialize FCM in view of the drawbacks.
The main underling principle is to use the robustness of ACA to
overcome FCM’s sensitiveness to the initialization condition.
Moreover, its intelligent searching ability will help to further
achieve optimization.

In order to improve its performance for clustering tasks,
relevant modifications should be made for AS. AS is well known to
suffer from high computational complexity, as indicated in many
previous researches. When applied in clustering problems, AS
tends to be time consuming because for every pixel in an image,
distances and pheromone concentration on the paths that lead
to all the other ants have to be calculated, requiring tremendous
computation. In addition, computation requirement will be
tripled if every ant is a 3-D vector instead of a 1-D one. To solve
this problem, we choose M0 cluster centers based on color
quantization and hence every ant only needs to calculate its
distances to these ‘‘food sources’’. Computation can be reduced
because M0 is usually much smaller than N, the total number of
pixels. We further confine the computation by setting the cluster
radius. If the distance between an ant and a cluster center is larger
than a given radius, then its probability of going to that ‘‘food
source’’ is set to zero. In this fashion, ants will simply ignore
clusters that are too far away. This may further bring higher
clustering accuracy and smaller computational complexity to the
algorithm.

In each round of iteration, ants previously classified will no
longer be considered. Only those unclassified will take part in the
clustering process which is a hard probabilistic partition, different
from Han and Shi’s method. The algorithm will accelerate as more
and more ants become classified. There are two possible
convergence conditions: either all ants are classified, or there
are still unclassified ants but the clustering centroids remain
unchanged for a certain number of iterations.

Another concerned problem is stagnation, which comes from
excessive pheromone accumulation on a single path. AS could
easily get into stagnation as a result of its product form of
heuristic information and pheromone concentration in the
probability equation. This situation is especially likely to happen
when solving clustering problem with AS, for massive number of
ants may choose the same cluster center at a time, leaving intense
pheromone concentration which attracts even more ants in the
next round. We propose a probability equation with the
summation form of heuristic information and pheromone con-
centration in order to improve its robustness against massive
build up of pheromone. When an ant is in close proximity to a
food source, heuristic information will play the dominant role and
the ant will most likely be attracted to this food source. This kind
of formation helps to reduce the chance that an ant goes
erroroneously to a food source much further away because of
huge pheromone concentration at that point.

Together with the algorithm definitions of FCM and AS in
Section 2, AFHA can be described as follows:
(1)
 Read image data to obtain a 3-D dataset, with each element
being a 3-D vector containing 3 components representing the
3 colors of an image pixel.
(2)
 Initialize cluster centroid set V ¼ fvhjv1; v2; . . . ; vM0 g and
centroid number M0 based on pixel color statistics.
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� For each color channel of RGB, quantization is performed to
reduce the cell number from 256 to 8, each cell with a
width of 32. The collection of all possible quantized colors
forms a feature vector set C 0. Let cl

0 be the lth element of C 0.
Then cl

0 is a 3-D vector representing the set element, with
each dimension c

0k
l being a cell endpoint. In other words,

c
0k
l ¼ 32 � nlk, where 1rkr3, 0rnlkr8, 1r lr729.

cl1
0 acl2

0 ; if l1a l2.
� Set up mapping between pixels and the above quantized

vectors. For every pixel in the image, each dimension of its
feature vector is rounded to 32n, where n is an integer
ranging from 0 to 8. This pixel is then assigned to the
corresponding cl

0 .
� Let Xl represent the pixel set that are assigned to cl

0 and
pl ¼ jXlj denote the number of pixels assigned to cl

0 . Let vh

be the mean value of the pixels assigned to cl
0 , whose plZP

for some threshold P. V ¼ fvhjv1; v2; . . . ; vM0 g. For
1r lr729, if plZP, calculate vh with the following
equation:

vh ¼
1

pl

X
xi AXl

xi ð7Þ

where 1rhrM0, M0 is the number of cl
0 whose pl is larger

than P.
1. I
(3)
 Calculate cluster center set C and center number M using
improved AS.
� Let Vh represent the pixel set that is assigned to cluster

center vh. Set q=0, M=0.
� For each unclassified ant xi, calculate its distance d to every

cluster center vh, where dih ¼ Jxi�vhJ. Set pih=1 if dih=0,
while other probabilities are set to 0.
� If diha0, calculate the probability according to the

following equation:

pih ¼

phahðtÞþZ
b
ihðtÞP

sASðphas ðtÞþZ
b
isðtÞÞ

hAS

0 otherwise

;

8><
>: ð8Þ

where Zih (t)=r/dih, S={s|disrr, s=1, 2yM0}.
� If the probability is larger than a given threshold l, assign

the ant to cluster center vh. Otherwise, leave this ant to the
set waiting for next iteration. Update the pheromone
concentration on vh with the following equations:

phhðt
0Þ ¼ rphhðtÞþDphk

h; ð9Þ

Dphh ¼
XN

k ¼ 1

Dphk
h; ð10Þ

where Dphh is the increase of pheromone concentration on
vh after one cycle, Dphk

h is the pheromone concentration
left on vh by the kth ant.
� Calculate the cluster centroids by the following equation:

vh ¼
1

jVhj

X
xi AVh

xi if jVhja0 ð11Þ
mage Peppers and its segmentation results. (a) Original image Peppers. (b) Image af
� Calculate the distance between cluster centroids. If the
minimum distance is less than a given threshold dc, we
merge the two nearest clusters to form a new one. Add
their pheromone concentration and refresh the center
value by Eq. (11).
� q=q+1.

If IterZT, or there is no unclassified ant, stop iteration and
go to the last step.
Else,
if JV ðqþ1Þ

�V ðqÞJZe1, go to the second step in phase (3),
Iter=0.
Else, go to the second step of phase (3), Iter= Iter+1.
� For every cluster center, if jVhja0, cj ¼ vh. M=M+1.

Cð0Þ ¼ fcjjc1; c2; . . . ; cMg.
ter
(4)
 pixel clustering based on FCM
� Set iteration terminating threshold e2 to a small positive

number and iteration time number q to 0. Initialize Uð0Þ

according to Cð0Þ with Eq. (2).
� Update Cðqþ1Þ according to UðqÞ with Eq. (3).
� Update Uðqþ1Þ according to Cðqþ1Þ with Eq. (2).
� Compare Uðqþ1Þ with UðqÞ.

If JUðqþ1Þ
�UðqÞJre2, stop iteration.

Otherwise, q=q+1. Go to the second step of phase (4).
3.2. Illustration of the implementation procedure

To illustrate the implementation process, we apply this
proposed approach to perform pixel clustering with the
256�256 image Peppers depicted in Fig. 1(a). The clustered
results of different stage are respectively, illustrated in Fig. 1(b–d).
Experiments were taken under the environment of Matlab R2007b,
with an Intel Core2 Duo P8600 CPU (2.4 GHz). First, image data is
loaded and initial cluster center set V is decided according to
phase (2) described in Section 3.1. The centroids after color
quantization are depicted by blue crosses points in Fig. 2. Next,
Cð0Þis obtained with improved AS, which is mathematically
described by phase (3). The result of Cð0Þ is illustrated by red
crosses in Fig. 2. Notice there is an obvious reduction of cluster
number since improved AS includes a cluster merging step, an
operation that automatically keeps a reasonable cluster number
for all kinds of input images. Finally, with initialized cluster
centers and center number indicated by Cð0Þ, image pixels are
clustered using FCM algorithm described by phase (4). Final
cluster centers are depicted in Fig. 2 by green squares.

3.3. Improving algorithm efficiency with ant subsampling

Although time is not a primary factor for optimization in
precision-oriented image segmentation, it yet has important
influence in algorithm practicability. Even with improvement of
AS based on setting cluster centers, computational complexity of
color quantization. (c) Image after running AS. (d) Final clustering result.
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the proposed method is still much larger than usual FCM since AS
is a more complicated algorithm compared with FCM. We propose
an ant subsampling based method to modify AFHA. Mathemati-
cally, the procedure can be described by replacing the third step of
phase (2) in Section 3.2 with the following steps:

Let Xl represent the pixel set that are assigned to cl
0 and

pl ¼ jXlj denote the number of pixels set to cl
0 . vh stands for the

average value of pixels assigned to cl
0 , whose plZthreshold P.

V ¼ fvhjv1; v2; . . . ; vM0 g. Per stands for the percentage of ant
number compared with N. For 1r lr729, randomly select Per �

jXlj pixels from Xl to form pixel set Xl
0 and calculate average value
Fig. 2. Illustration of cluster centroids.

Fig. 3. Illustrations of segmentation result and cluster centers using IAFHA. (a) Imag

Fig. 4. (a) Illustration of cluster centroids. (
vh with the following equation:

vh ¼
1

jXl
0 j

X
xi AXl

0

xi; if jXl
0 ja0 ð12Þ

where 1rhrM0, M0 is the number of cl
0 whose pl is larger than P.

In addition, at phase (3) in Section 3.2, only mark the selected
Per � jXlj pixels in the above step as unclassified ants waiting for
distribution instead of marking all pixels as unclassified ants.

The computational complexity of improved AFHA (IAFHA)
could be largely reduced since the total ant number only takes a
small proportion of the total pixel number N. Moreover, compared
with original algorithm, IAFHA is able to generate a similar
initialization for FCM because ants are selected with a fixed ratio
from every pixel set that belongs to cl

0 . Notice that the smaller the
proportion, the faster the improved AFHA will be. However, if Per

is set to be too small, the improved AFHA will become an FCM
algorithm with randomly selected initial cluster centers, which
tends to be unstable and unreliable. Thus a tradeoff between
running time reduction and keeping a good initialization is
needed when choosing Per.

To illustrate its performance, we apply IAFHA to segment
image Peppers, with the segmentation results and the running
time comparison respectively, demonstrated in Figs. 3 and 4. In
Fig. 3(b), again blue crosses represent vh while red crosses and
green squares respectively, stand for Cð0Þ and the final cluster
centers. In can be inferred from Fig. 4 that compared with AFHA,
there is a large running time reduction by IAFHA, which suggests
a significant decrease of computational requirement.
e after color quantization. (b) Image after running AS. (c) Final clustering result.

b) Comparison of algorithm efficiency.
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3.4. Generating spatially continuous segments

Segmentations with clustering are often featured with numer-
ous discrete small regions. The spatial connectivity between
pixels in the same cluster could hardly be guaranteed. These
minor regions on one hand preserves the image detail but on the
other hand largely affects the segmentation quality. To generate
reasonable segmentations, postprocessing is necessary for this
issue.

Some previous works have concentrated on add clustering
with spatial constraints [50]. The original clustering cost function
is added with a neighboring information term to enhance the
spatial continuity of clustering results. They actually provide
feasible ways for generating results with less noise effects and
could be potentially incorporated into our proposed scheme.
However, spatial connectivity is still not guaranteed since a
definite spatial connectivity constraint has not been imposed.
Rather, these methods are more like smoothing operations that
average out noise points, although not directly but in the form of
membership modification.

Instead of the above strategy, we build a region adjacency
graph for the clustered image. Eight-connection is applied to
define spatial connectivity and spatially connected pixels in the
same cluster are assigned with the same labels. We simply set a
threshold for the minimum region pixel number to eliminate
small regions and greedily merge two regions together according
to their region dissimilarities. The stopping criterion would either
be a threshold for the region dissimilarity, or a minimum region
number. The dissimilarity measure could be elaborately designed
to achieve better results, but for simplicity only the Euclidean
distance between the two region mean feature vectors is
considered in this paper. We shall observe that, with these
relatively simple operations, reasonable segmentations could be
generated.
4. Experimental results

4.1. Parameter analysis

According to algorithm description, a, b, l, r, dc and P are the
major parameters of AFHA. a and b are two parameters that
control the relative weight of the pheromone concentration and
the heuristic value. Adjusting only one of them will be enough for
finding a balance between heuristic information and pheromone.
l indicates the minimum probability for pixel classification. r
stands for the evaporation rate of pheromone concentration. dc

denotes the minimum distance for merging clusters. Finally, P

denotes the minimum number of pixels to form an initial cluster
center. For IAFHA, Per, the parameter which controls the ant
proportion, is also a major parameter that controls the segmenta-
tion result.

Relevant researches and experiments have revealed some
basic properties of the parameters. If a is reduced to zero, AS is
essentially a greedy randomized search algorithm. However when
a is assigned with a value which is too large, pheromone will take
the major influence in AS and the whole algorithm will become a
much less optimized one. For l, setting it to be too small is likely
to induce false classifications. On the contrary, if l is larger than
0.5, the number of all available paths will be no larger than 1.
Moreover, l with a value too large will prevent many pixels from
being classified and cause running time to be much longer. r
should be assigned to less than 1 in order to prevent stagnation.
dc should not be initialized too large or too small since it may
cause over segmentation or imprecise segmentation. For P,
initializing it to be too small will increase computational
complexity since the initial cluster center number is greatly
increased. However, if P is too large then the initialization will
also be a sub-optimized one. Finally, Per should be assigned a
value larger than a real positive threshold. Consider an extreme
case in which Per equals to 1=jXljmax. From 3.3 one immediately
knows that only 1 subsampled point will be selected from the
largest set, provided that Per � jXljo1 indicates subsampling 0
point from the lth set. If Per is further increased, one can possibly
get M or more subsampled points, which satisfies the basic
requirement of initialization. In this case, IAFHA partially
degenerates to FCM with random initialization—not totally
because initialization is biased towards larger sets. From the
subsampling point of view, increasing Per will generally enhance
the expectation of better predicting the original dataset. In real
applications, a threshold of 0.1 or larger is usually favored. An
example is the subsampling ratio in Matlab function ‘‘K-means’’
with option ‘‘start’’ selected as ‘‘cluster’’, which adopts 0.1 as the
threshold.

An important property allows us to implement this algorithm
without much concern about parameter tuning. More specifically,
these parameters are normally independent with each other and
relatively stable for various inputs. Although one could hardly
guarantee that the most optimized results will be achieved with
fixed parameters, the algorithm is likely to generate reasonable
and satisfactory results if the parameters are within a proper
range. The reason behind is that the AS-based cluster initialization
step has been designed to be robust against input and parameter
changes. Color quantization enables directed and extensive search
in the feature space, while cluster merging endows adaptivity of
cluster numbers. Moreover, the merging process is taken in a
greedy and gradual way, which further increases clustering
accuracy and robustness. In general, parameters are fixed through
training and the set of trained parameters could give good
performance and work independently with the input. In the
training process, one can inspect the reasonable range of a single
parameter at a time by tuning it while fixing all other parameters.
Then a parameter value is chosen and the same process is
iteratively carried out for the whole parameter set under different
inputs. Although trainings based on various inputs could indicate
diverse ‘‘locally optimized’’ parameter set, the reasonable para-
meter ranges one observes tend to overlap and thus decisions
could be made to finally determine the parameter values.
Accordingly, we fix the parameters as follows: a=0.5, b=2,
l=0.4, r=0.8, Per=0.3, m=2, r=80. The following experiments
will all adopt this parameter setting and we shall see that it could
work well with different inputs. The only parameter that is
dependent on the input is P, influenced by the input image size.
Setting P as 0.006�0.008 N will be able to generate enough initial
centers for extensive and directed search in the feature space.
We are particularly interested in the selection of dc since
this parameter is the key parameter that influences the final
cluster number and the algorithm tolerance to clustering distor-
tion. Thus we vary this parameter in the following tests to find a
reasonable value and to decrease the randomness of the
clustering results.
4.2. Evaluation on clustering structures

Previous works on fuzzy clustering have featured several
important cluster validity criterions for evaluation of the cluster
quality. One of the most fundamental benchmark is the mean
squared error (MSE), which could be described as follows:

MSE¼
1

N

XM
j ¼ 1

X
iASj

Jxi�cjJ
2

ð13Þ
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The concept of MSE is quite clear: when cluster number is fixed, a
good clustering algorithm should always generate results with
small distortion. In other words, cluster centroids should be
placed in such a way that they reduce the distances to data pieces
as much as possible. This concept can be applied to many
clustering algorithms in which objective functions are expressed
in terms of weighted distortions.

Another commonly used benchmark is Bezdek’s partition
coefficient [45], whose evaluation function VPC is defined as
follows:

VPC ¼
XN

i ¼ 1

XM
j ¼ 1

m2
ji=N ð14Þ

Properties of this cluster validity evaluation model were
studied in [45,46]. For a crisp partition, VPC achieves maximum
value of 1. This equation essentially measures the fuzziness of a
clustering result. A smaller VPC value indicates a fuzzier result.
From the context of validation, if an algorithm produces a result
that is quite fuzzy, then this algorithm is not doing a good job.
Thus the larger the VPC value, the better the clustering result.

A more recent validity evaluation model is the Xie–Beni
function [47]:

VXB ¼

PN
i ¼ 1

PM
j ¼ 1 m2

jiJxi�cjJ
2

N min8jakfJcj�ckJ
2
g

ð15Þ

According to Xie and Beni, VXB should decrease monotonically
when M is close to N. When VXB shows a smaller value, the result
is presumably a better partition. This also accords with our
segmentation applications since given certain number of cluster,
we would like regions be visually as different as possible.

Both AFHA and IAFHA are implemented with parameters set in
Section 4.1 to perform pixel clustering on six different color
images. Moreover, tests on improved AS, randomly initialized
FCM are made for comparison. Random initializations have been
shown to be the best approach for the C-means family [51], and
we are interested to see whether the proposed scheme could
result in generally better partitions than random initialization. AS
also adopts the above optimized parameters since its clustering
process is a similar one to the initialization process of AFHA.
To give a fair comparison, m in FCM is set to 2 and M is decided
by referring to the final segment number of IAFHA. However, it
should be pointed out that FCM itself does not possess an adaptive
decision mechanism of M. To implement FCM, a laborious process
of selecting M is generally needed.

4.2.1. MSE test

Fig. 5 shows the MSE values of clustering by varying dc from 20
to 40. Notice that both AFHA and IAFHA shows their advantages
over randomly initialized FCM with less distortion and FCM has
larger fluctuation with its performance, which shows the
improvements of compactness and stability clustering using the
proposed approach.

4.2.2. VPC Test

Fig. 6 shows the VPC values of clustering by varying dc from 20
to 40. It is interesting to see AS sometimes produces the best
general distribution, while VPC after the distortion minimization
step in AFHA and IAFHA might to some extent degenerate (See
Fig. 6 (e)). However, the performance of AFHA and IAFHA is still
obviously better than randomly initialized FCM.

4.2.3. VXB Test

Fig. 7 shows the VXB values of clustering by varying dc. Again,
we could see results similar to VPC. Both AFHA and IAFHA
have better cluster distributions compared with randomly
initialized FCM.
4.2.4. Comparison with standard initializations

There exist some standard methods for clustering initialization
in the machine learning literature. The Matlab toolbox provides K-
means with multiple initialization options, including ‘‘sample’’,
‘‘uniform’’ and ‘‘cluster’’. The first option selects M observations
from the input data at random and is the default initialization
method. The second option selects M points uniformly at random
from the range of the input. The third method performs a
preliminary clustering phase on a random 10% subsample of input
data. Notice that none of these options includes automatic
decision of cluster number. Again, we always set M equal to
the final cluster number of IAFHA. Tables 1–3 show the
comparison of clustering performance between the proposed
IAFHA and the latter two methods mentioned above. Results in
the tables indicate the advantage of IAFHA over the standard
initializations. Notice that the name ‘‘S.S.C.’’ is short for
‘‘Seven_Sisters_Cliffs’’.
4.3. Evaluation on pre-segmentation results

Fig. 8 shows the original images of Car (430�256), Peppers

(341�256), House (256�256), Football (256�256) and Golden

Gate (256�256) and their pixel clustering results. Notice for Car,
AFHA, IAFHA and AS outperform the other methods by classifying
the meadow and diaphragm wall as single clusters while
FCM falsely clusters the diaphragm wall as part of the road. In
the clustering test of Football, there are considerable pixels
mistakenly assigned to the background by FCM, which is an
obvious classification error that makes the football to be a mis-
shapen one. In Seven Sisters Cliffs, AFHA and IAFHA also
outperform FCM by accurately assigning the pixels of the house
roofs and the bushes (Fig. 8).

When segmenting relatively simple natural images, AFHA and
IAFHA automatically assign fewer clusters with fewer regions,
which are observed in tests on House and Football. The reason lies
in the mechanism that cluster center initialization is an adaptive
process which decides cluster centers and center number. This
will help to find a better classification and the advantage of less
distortion would also be considerable when postprocessing color
images. Based on experimental results, we fix dc as 28. Although
this value would not guarantee that the best cluster number is
obtained, it tends to produce reasonable results that are suitable
for postprocessing (Figs. 10 and 11)
4.4. Comparison of algorithm efficiency

Though algorithm efficiency might not be our primary concern
for image segmentation, running time imposes large influence
upon the practicability of the proposed approach. Essentially,
AFHA is an algorithm which concentrates on its performance by
sacrificing its efficiency. Given M cluster numbers, the complexity
of AS is approximately O(MN), which is the same as FCM. Consider
that AS is an algorithm that has more complicated operations than
FCM, the computational complexity of AFHA is thus higher. A
better solution is to find a tradeoff between them, which results in
the IAFHA based on ant subsampling. The advantage of IAFHA lies
in the fact that computational complexity is reduced while
keeping its performance close to AFHA, which is proven by
clustering structure tests in Sections 4.2 and 4.3. Table 4 shows
the execution time of the four algorithms when dc=28, while
Fig. 9 gives the visualized contrast of efficiency.
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4.5. Comparison with the X-means

There are also some state-of-the-art techniques which aim at
providing a solution to the initialization problem, especially the
Fig. 5. Illustration of MSE. (a) Car. (b) Football. (c) Golden
decision of the cluster number. The X-means algorithm is proposed
for the purpose of automatic decision of cluster number using the
Bayesian information criterion (BIC) [52]. The algorithm splits each
parent cluster into two sub-clusters by performing a local K-means
Gate. (d) House. (e) Peppers2. (f) Seven Sisters Cliffs.
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Fig. 6. Illustration of VPC. (a) Car. (b) Football. (c) Golden Gate. (d) House. (e) Peppers2. (f) Seven Sisters Cliffs.
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clustering. Based on local BIC values before and after cluster splitting,
the algorithm decides whether to keep the parent cluster or to split it
into two. Usually, initial cluster number is set to be very small. Global
clustering and local cluster splitting is iteratively performed to
increase the cluster number until the maximum number is reached.
Global BIC is also calculated to select the best model encountered.
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Fig. 7. Illustration of VXB. (a) Car. (b) Football. (c) Golden Gate. (d) House. (e) Peppers2. (f) Seven Sisters Cliffs.
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We are particularly interested to see whether X-means could
make a better image preprocessing scheme and we compare
IAFHA with X-means by performing pre-segmentation experi-
ments. Image Peppers1 and the six original color images in Section
4.1 are used as test images. We also select several images from the
UC-Berkeley Image Segmentation Dataset [48] to carry out
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Table 1
MSE test.

Methods Images dc

20 22 24 26 28 30 32 34 36 38 40

IAFHA Car 189.9 204.6 222.7 261.8 261.2 379 391.1 390.9 389.9 452.3 452.2
Football 179.7 204.9 225.7 215.1 227.5 254.4 252.5 287.8 290.9 450.0 371.4

Golden_Gate 197.8 221.2 253.0 289.6 285.9 305.2 326.2 385.8 438.1 382.5 437.7
House2 242.3 266.4 266.3 279.9 280.2 279.9 280.3 290.7 290.7 344.0 343.7

Peppers2 409.5 436.7 419.1 452.1 488.6 488.5 488.0 514.1 513.0 543.8 543.2

S.S.C. 299.5 293.4 326.2 326.9 354.2 373.8 358.1 442.5 442.0 462.6 502.8

Uniform Car 202.3 267.6 261.6 298.9 320.4 467.7 453.9 403.5 449.7 559.8 487.8

Football 169.3 189.2 228.6 203.7 234.4 262.1 252.6 332.3 333.3 527.3 359.9

Golden_Gate 198.3 206.0 257.0 291.6 298.0 312.4 343.7 385.6 442.1 435.9 420.4

House2 266.1 253.1 264.3 275.4 269.4 289.0 286.0 307.1 293.0 318.1 333.8
Peppers2 402.9 433.0 414.5 505.9 537.7 530.0 537.5 688.1 541.8 589.4 642.5

S.S.C. 287.3 293.1 351.3 389.9 370.3 411.3 401.7 444.0 424.9 475.4 592.1

Cluster Car 187.2 223.8 221.6 265.9 280.5 340.2 521.5 377.3 503.4 421.2 555.7

Football 174.7 198.6 222.2 203.2 244.6 258.5 247.8 286.0 329.7 446.5 369.1
Golden_Gate 180.6 192.1 236.4 270.5 265.6 303.6 370.2 399.2 471.7 382.2 472.3

House2 185.8 237.5 176.2 245.1 241.5 241.6 291.3 241.3 334.1 310.5 345.2

Peppers2 369.5 389.9 404.4 444.4 513.3 548.2 467.2 553.6 552.6 564.2 533.9
S.S.C. 227.6 225.3 282.6 301 302.3 376.6 327.2 394.8 399.4 512.7 473.4

Table 2
VPC test.

Methods Images dc

20 22 24 26 28 30 32 34 36 38 40

IAFHA Car 0.602 0.612 0.623 0.641 0.640 0.624 0.698 0.697 0.698 0.749 0.749
Football 0.584 0.604 0.635 0.616 0.634 0.650 0.650 0.667 0.666 0.699 0.672

Golden_Gate 0.494 0.505 0.527 0.547 0.550 0.562 0.569 0.615 0.618 0.611 0.621
House2 0.674 0.706 0.707 0.715 0.729 0.715 0.728 0.753 0.754 0.760 0.754
Peppers2 0.478 0.499 0.497 0.513 0.525 0.526 0.526 0.541 0.539 0.547 0.547
S.S.C. 0.483 0.485 0.521 0.528 0.540 0.550 0.551 0.562 0.561 0.577 0.597

Uniform Car 0.580 0.579 0.591 0.611 0.642 0.585 0.659 0.663 0.640 0.625 0.667

Football 0.587 0.596 0.630 0.611 0.630 0.635 0.648 0.648 0.646 0.678 0.679
Golden_Gate 0.473 0.499 0.519 0.541 0.548 0.553 0.562 0.603 0.608 0.580 0.613

House2 0.612 0.678 0.652 0.683 0.691 0.619 0.656 0.671 0.740 0.754 0.688

Peppers2 0.453 0.463 0.476 0.462 0.492 0.492 0.483 0.473 0.494 0.508 0.476

S.S.C. 0.453 0.451 0.473 0.467 0.488 0.493 0.491 0.552 0.563 0.564 0.548

Cluster Car 0.597 0.599 0.602 0.613 0.618 0.658 0.619 0.689 0.662 0.689 0.673

Football 0.577 0.576 0.622 0.610 0.605 0.634 0.650 0.667 0.640 0.699 0.674

Golden_Gate 0.484 0.509 0.528 0.557 0.555 0.550 0.559 0.604 0.608 0.602 0.608

House2 0.652 0.654 0.729 0.621 0.664 0.667 0.649 0.710 0.665 0.759 0.712

Peppers2 0.444 0.495 0.471 0.486 0.496 0.485 0.518 0.499 0.498 0.509 0.524

S.S.C. 0.463 0.477 0.502 0.504 0.543 0.495 0.530 0.572 0.565 0.539 0.595
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extensive tests. Several empirical goodness methods are
applied for quantitative evaluation of the segmentation results.
These methods estimate the segmentation quality with some
human characterization about the properties of ‘‘ideal’’ segmenta-
tion and require no prior knowledge of correct segmentation [33].
Here we adopt four evaluation functions to serve as the
quantitative benchmarks. The first three functions are respec-
tively:

FðIÞ proposed by Liu and Yang [41],

FðIÞ ¼
ffiffiffiffiffi
M
p XM

j ¼ 1

e2
jffiffiffiffiffi
Nj

p : ð16Þ

F 0ðIÞ proposed by Borsotti et al. [42],

F 0ðIÞ ¼
1

1000 � N
SQRT

� XMaxArea

a ¼ 1

½SðaÞ�1þ1=a
�XM

j ¼ 1

e2
jffiffiffiffiffi
Nj

p : ð17Þ
Q ðIÞ further refined from FðIÞ by Borsotti et al. as [42],

Q ðIÞ ¼
1

1000 � N

ffiffiffiffiffi
M
p XM

j ¼ 1

e2
j

1þ log Nj
þ

SðNjÞ

Nj

� �2
" #

: ð18Þ

For the above three formulae, I is the image and N is the total pixel
number in I. The segmentation can be described as an assignment
of pixels in image I into M regions. Let Cj denote the set of pixels in
Region j, and Nj=|Cj| denote the number of pixels in Cj. We also
define xp as the feature vector of pixel p and cj ¼ ð

P
pAC j

cpÞ=Nj as
the feature centroid of Cj. The squared error of cluster j is defined
as e2

j ¼
P

pAC j
ðxp�cjÞ

2. Finally, S(a) denotes the number of regions
in image I that have an area of exactly a and MaxArea denotes the
number of pixels in the largest region.

Notice that all of the above three benchmarks aim at finding a
better tradeoff between homogeneity of a region and the total
segment number. When segment number increases, the squared
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Table 3
VXB test.

Methods Images dc

20 22 24 26 28 30 32 34 36 38 40

IAFHA Car 0.358 0.413 0.443 0.540 0.541 0.657 0.271 0.271 0.264 0.114 0.109
Football 0.188 0.177 0.135 0.183 0.122 0.120 0.116 0.130 0.137 0.120 0.099

Golden_Gate 0.177 0.179 0.229 0.216 0.220 0.248 0.165 0.128 0.160 0.113 0.122
House2 0.366 0.190 0.189 0.168 0.086 0.169 0.095 0.078 0.077 0.101 0.103
Peppers2 0.529 0.412 0.458 0.452 0.543 0.541 0.578 0.381 0.425 0.432 0.424
S.S.C. 0.274 0.207 0.176 0.153 0.164 0.200 0.180 0.251 0.239 0.269 0.258

Uniform Car 0.731 0.885 0.719 0.580 0.422 1.300 0.357 0.629 0.883 0.939 0.391

Football 0.215 0.172 0.140 0.212 0.188 0.263 0.119 0.145 0.126 0.221 0.167

Golden_Gate 0.870 0.295 0.248 0.232 0.207 0.243 0.244 0.234 0.227 0.473 0.181

House2 3.478 0.408 0.848 0.460 0.498 2.584 0.819 0.912 0.095 0.136 2.785

Peppers2 0.923 0.995 1.007 1.284 0.950 0.839 1.462 1.009 1.334 0.912 1.491

S.S.C. 0.791 0.734 0.977 1.063 0.841 1.059 0.805 0.321 0.299 0.801 1.211

Cluster Car 0.496 0.516 0.443 0.727 0.653 0.369 1.674 0.289 0.428 0.320 0.484

Football 0.231 0.333 0.198 0.188 0.292 0.234 0.111 0.132 0.280 0.113 0.094
Golden_Gate 0.429 0.311 0.158 0.178 0.181 0.203 0.473 0.181 0.214 0.160 0.192

House2 3.736 5.117 0.159 4.451 4.788 4.777 4.560 0.537 0.825 0.087 0.630

Peppers2 1.948 0.481 1.158 1.131 1.227 1.239 0.590 1.256 1.280 0.717 0.695

S.S.C. 0.689 0.565 0.719 0.810 0.163 1.661 0.854 0.143 0.545 1.060 0.204

Fig. 8. Pixel clustering results. First column: original images. Second column: AFHA. Third column: FCM. Forth column: IAFHA. Fifth column: AS.
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error part, which marks the homogeneity of a region, will
generally decrease. An extreme condition is to assign every pixel
in an image as a single cluster, reducing squared color error
within every cluster to zero. However, this is not likely to happen
for usual image segmentation since it obviously makes no sense.
The assumption for a good segmentation is to achieve more
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Fig. 9. Illustration of execution time.

Fig. 10. Image segmentation tests. First column: original images. Second column: IAFHA segmentation. Third column: region boundary of second column. Forth column:

MS segmentation. Fifth column: Ncut segmentation. Sixth column: Segmentation using Han and Shi’s method. Test images from the first row to the sixth row are

Brandyrose, Butterfly, Cow, Flower, Frangipani1, Frangipani2, respectively.

Z. Yu et al. / Pattern Recognition 43 (2010) 1889–1906 1901
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homogeneity within regions while keeping a reasonable segment
number.

Apart from these functions, we also adopt a more recently
proposed information theoretic approach by Zhang et al. [49].
Their evaluation E(I) is based on entropy and the minimum
description length principle (MLD). Given a segmented image,
they define Vj as the set of all possible values for the luminance in
Table 4
Execution time of different algorithms.

Images Algorithms

AS FCM AFHA IAFHA

Car 54.0 57.6 76.6 60.3

Peppers2 62.7 68.7 90.0 70.0

House 22.0 18.7 24.1 14.6

Football 29.7 15.4 35.2 15.3

Golden Gate 53.3 35.8 59.9 37.1

Seven Sisters Cliffs 69.7 53.4 92.1 68.3

Fig. 11. Image segmentation tests. First column: original images. Second column: IAFHA

MS segmentation. Fifth column: Ncut segmentation. Sixth column: Segmentation using

Lake, Loch Ness, Mountain, Opera, Red Building, Skyline Arch, respectively.
region j and let Lj(m) denote the number of pixels in region j that
have luminance of m in the original image. The entropy for region
j is defined as:

HðRjÞ ¼�
X

mAVj

LjðmÞ

Sj
log2

LjðmÞ

Sj
ð19Þ

Then, the expected region entropy of image I is defined as:

HrðIÞ ¼�
XN

j ¼ 1

Sj

SI

� �
HðRjÞ ð20Þ

Notice that the expected region entropy serves in a similar
capacity to the distortion term in F, F0 and Q. Since an over-
segmented image will have a very small expected region entropy
value, another term which penalizes segmentations should be
combined. Thus they also introduced the layout entropy:

HlðIÞ ¼�
XN

j ¼ 1

Sj

SI

� �
log2

Sj

SI
ð21Þ

The final evaluation E(I)=Hl(I)+Hr(I).
segmentation. Third column: region boundary of second column. Fourth column:

Han and Shi’s method. Test images from the first row to the seventh row are Hand,
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Table 5
Quantitative evaluations on pre-segmentations of selected images.

Algorithm and image name F(I) (*1.0e+8) F0(I) Q(I) (*1.0e+6) E(I) Cluster number Region number

IAFHA Car 0.7329 17.0077 0.0013 13.6466 13 2912

Football 0.3367 17.8547 0.0084 14.5556 10 3626

Golden Gate 0.6647 28.2005 0.0049 15.3514 16 3847

House 0.2168 6.3619 0.0004 13.9399 10 1816

Peppers1 0.6946 27.8200 0.0030 15.3179 17 3300

Peppers2 0.5050 10.4700 0.0002 15.1497 17 1673

Seven Sisters Cliff 0.9647 38.2240 0.0140 14.9257 19 5544

X-means Car 0.6419 46.4751 2.0124 15.2059 123 20861

Football 0.3789 49.5582 3.9496 15.4142 99 20223

Golden Gate 0.4946 48.9242 0.6393 15.5498 96 12379

House 0.3736 23.9507 0.0603 14.4628 51 7272

Peppers1 0.7049 43.9840 0.0460 15.3909 55 6622

Peppers2 0.5211 23.9640 0.0348 15.6077 129 6836

Seven Sisters Cliff 1.0094 74.0019 0.6212 15.2874 96 14667

Table 6
Quantitative evaluations on pre-segmentations of selected images from the UC-Berkeley Segmentation Dataset.

Algorithm and image name F(I) (*1.0e+8) F0(I) Q(I) (*1.0e+6) E(I) Cluster number Region number

IAFHA #35008 0.3105 7.205 0.0007 14.5313 14 2403

#86000 1.7664 81.0289 0.0724 15.2212 20 8772

#101087 0.7313 20.9963 0.0038 11.9827 13 4089

#102061 0.8219 27.1201 0.0098 14.6467 16 5272

#108073 1.3443 54.6001 0.041 15.3719 10 7921

#176035 0.7200 26.2581 0.0143 15.3084 17 5501

#208001 1.2351 46.7883 0.0367 16.312 17 8300

#232038 0.7841 29.8636 0.0244 13.6195 12 6731

#253036 0.1236 2.6015 0.0003 13.3012 9 1692

#291000 4.8275 400.8227 3.6538 16.5655 17 25581

#295087 1.4928 61.5692 0.0384 14.9781 18 7497

#302008 0.6508 26.1849 0.0129 11.2466 13 4529

#376043 1.9245 88.9795 0.1072 16.251 14 10533

X-means #35008 0.3149 13.0962 0.0307 14.699 60 6639

#86000 1.2699 101.62 1.9225 15.3153 129 19649

#101087 0.654 43.0002 0.6093 12.3943 95 14836

#102061 0.4769 35.182 0.9727 14.8289 105 15794

#108073 0.8515 63.4788 1.3868 15.624 86 18545

#176035 0.697 50.0383 1.1301 15.735 105 17710

#208001 1.2283 50.9847 0.0667 16.3155 30 9747

#232038 0.5137 50.6484 6.6682 14.1725 104 26742

#253036 0.099 4.5366 0.0557 13.9997 115 7725

#291000 4.6826 390.4325 3.8903 16.5668 23 26215

#295087 1.417 90.2677 0.6484 14.9988 81 16031

#302008 0.2447 20.853 1.4122 11.5498 120 15360

#376043 1.5916 141.7097 6.0314 16.3968 71 29580
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Tables 5 and 6 show the evaluations on segmentation of
selected images in previous sections and from the UC-Berkeley
Segmentation Dataset, respectively. Except F(I), the other three
evaluation benchmarks including F0(I), Q(I) and E(I) have favored
segmentations by IAFHA. Also notice that F(I) has been reported
of being too biased towards over-segmentation with very
fine regions [33]. In general, this indicates that IAFHA might
be a better approach in term of image preprocessing and
segmentation.

Results also show that X-means tends to favor results with
larger cluster numbers. We have actually tuned the parameters in
IAFHA forcing it to generate the same number of clusters as
X-means does, and found that X-means could obtain even better
structures. Yet, differences between most results are not very
significant and both algorithms have shown their advantage over
FCM results that are not properly initialized. This is under-
standable since IAFHA are not specifically designed for initializa-
tion with large number of centroids and the refining of clusters is
performed only once with FCM, while in X-means clusters are
generated where they are needed and refining is iteratively
performed. As a matter of fact, X-means really finds good
clustering structures from the pure prospective of machine
learning and Bayesian Theory. However, in terms of real world
applications, heuristic methods could generate results that are
more practical, as indicated by this comparison.
4.6. Applications for color image segmentation

With previous parameter settings and the postprocessing
operations described in Section 3.4, we perform color image
segmentation using IAFHA. In addition, mean shift, normalized
cut (simultaneous K-way cut), Han and Shi’s method are
implemented for comparison. Region numbers of IAFHA and
normalized cut are set to be the same as numbers in mean shift
segmentations. It could be indicated from these results that even
with the simple dissimilarity measures, IAFHA based segmenta-
tion is able to produce relatively satisfactory and accurate
segmentations. Moreover, IAFHA tends to preserve more details
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Table 7
Comparison on PSNR and postprocessing time.

Image name PSNR (db) Processing

time (IAFHA)
Processing

time (X-means)
Processing

time (FCM)
Region

number
Mean shift IAFHA X-means FCM Ncut

Brandyrose 17.9807 18.6093 17.9303 18.0022 17.9878 81.3131 210.8045 96.8366 16

Butterfly 22.6448 24.2724 23.8321 24.0838 24.3944 71.3566 395.0590 68.1658 16

Cow 21.5597 22.0206 21.9902 21.7599 22.2428 272.7347 948.6449 436.7847 23

Flower 17.5670 18.7185 17.6634 18.0540 17.1915 248.3126 790.6102 233.8996 43

Frangipani1 18.8107 18.9185 18.6730 17.9335 19.5203 143.6157 431.6396 104.4861 24

Frangipani2 19.6892 18.2396 19.1995 19.3664 19.4094 327.9762 622.6014 352.3005 49

Hand 21.1485 21.1809 21.0576 21.0397 19.5696 764.9458 2568.4355 852.1279 5

Lake 22.7476 24.1123 20.9394 24.1075 23.4479 20.8511 102.7470 18.1015 7

Loch Ness 20.6189 21.2282 21.1993 20.9432 20.6019 51.3326 482.0608 53.7308 8

Mountain 19.4092 20.6042 20.6032 20.5861 22.1918 341.9682 2204.1524 278.0053 4

Opera 18.7891 21.8020 21.0999 21.5951 21.41389 82.5618 1017.0902 79.7039 14

Red Building 22.2231 23.6602 24.0707 22.6129 24.1084 62.8192 318.1792 50.4059 23

Skyline Arch 19.3316 18.5644 14.5872 15.5659 17.6085 86.9771 766.4425 21.3006 15

Average 20.1939 20.9178 20.2189 20.4346 20.7452 196.6742 835.2667 203.5269 19

Table 8
Q(I) evaluation on segmentation results.

Image name Q(I)

Mean shift IAFHA X-means FCM Ncut Han & Shi’s method

Brandyrose 1.1102 1.0816 1.2402 1.2104 1.3730 11.3464

Butterfly 0.3722 0.2810 0.3087 0.2893 0.2704 1.07604

Cow 0.6524 0.6045 0.5844 0.6363 0.6001 29.9306

Flower 2.2822 1.8284 2.2176 2.0786 2.8978 136.1547

Frangipani1 1.1626 1.1142 1.1575 1.4029 1.1634 6.4074

Frangipani2 1.4674 2.0538 1.5441 1.5645 1.8278 81.1642

Hand 0.2978 0.2935 0.3005 0.3028 0.4372 15.0362

Lake 0.2708 0.2002 0.3901 0.2001 0.2377 3.6819

Loch Ness 0.4636 0.4128 0.4127 0.4387 0.4991 5.1158

Mountain 0.3810 0.2905 0.2902 0.2910 0.3475 98.7471

Opera 0.8570 0.4656 0.5218 0.4738 0.5178 118.9640

Red Building 0.5513 0.4460 0.4243 0.5553 0.4087 4.5310

Skyline Arch 0.9241 1.0937 2.5219 2.1377 1.4542 116.1115

Average 0.8302 0.7820 0.9165 0.8909 0.9258 48.3282
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along boundaries, which could be potentially utilized for further
analysis of textures and refinement of segmentations.

Tables 7 and 8 exhibits the PSNR and Q(I) evaluation results
upon segmentations. The same postprocessing operations has
been carried out for X-means and randomly initialized FCM. The
initial cluster number of FCM is set to be the same as IAFHA.
Notice that for both evaluations, segmentations by IAFHA have
obtained better results. In addition, the postprocessing speed of
IAFHA outperforms X-means, with the postprocessing execution
time approximately one third of that of X-means.
5. Conclusions

In this paper, we have introduced an adaptive unsupervised
scheme for pixel clustering and color image segmentation. The
proposed clustering algorithm called AFHA adaptively initializes
cluster centroid distribution and centroid number, showing the
advantage of optimization using the Ant System algorithm.
Improvements have been made to reduce its computational cost.
Test results of clustering structure and execution time demon-
strate that ant subsampling could reduce computational complex-
ity while at the same time, exhibiting performances close to those
with full number of ants. And our approach could obtain better
clustering structures over FCM with random initialization, uni-
form initialization and preliminary clustering. We have further
proposed an IAFHA-based segmentation scheme with spatial
information considered. Extensive experiments in which compar-
ison with X-means and segmentation tests are made have
demonstrated the practical value of this segmentation method.
In conclusion, AFHA could be a feasible preprocessing approach
for operations such as image semantic and pattern recognition.
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